/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/phi/api/lib/utils/storage.h" #include "paddle/phi/core/dense_tensor.h" #include "paddle/phi/core/sparse_coo_tensor.h" #include "paddle/phi/kernels/empty_kernel.h" namespace phi { namespace sparse { struct Dims4D { int dims[4]; Dims4D(const int batch, const int x, const int y, const int z) { dims[0] = batch; dims[1] = z; dims[2] = y; dims[3] = x; } HOSTDEVICE const int& operator[](int i) const { return dims[i]; } }; // Judge whether the current position x is in (lower, upper) inline HOSTDEVICE bool Check(const int& x, const int& kx, const int& pad, const int& stride, const int dilation, const int kdim, const int xdim) { const int lower = x - dilation * kx + pad; const int uper = x + (kdim - kx - 1) * dilation - pad; return (lower >= 0 && lower % stride == 0 && uper < xdim); } // Check whether the current position(x, y, z) is legal: // Judge the minimum and maximum values at each latitude inline HOSTDEVICE bool Check(const Dims4D& dims, const Dims4D& kernel_dims, const Dims4D& paddings, const Dims4D& dilations, const Dims4D& strides, const int x, const int y, const int z, const int kx, const int ky, const int kz) { bool x_valid = Check( x, kx, paddings[3], strides[3], dilations[3], kernel_dims[3], dims[3]); bool y_valid = Check( y, ky, paddings[2], strides[2], dilations[2], kernel_dims[2], dims[2]); bool z_valid = Check( z, kz, paddings[1], strides[1], dilations[1], kernel_dims[1], dims[1]); return (x_valid && y_valid && z_valid); } template inline HOSTDEVICE int PointToIndex(const int& batch, const int& x, const int& y, const int& z, const Dim& dims) { return batch * dims[1] * dims[2] * dims[3] + z * dims[2] * dims[3] + y * dims[3] + x; } template inline HOSTDEVICE void IndexToPoint( const int index, const Dim& dims, int* batch, int* x, int* y, int* z) { int n = index; *x = n % dims[3]; n /= dims[3]; *y = n % dims[2]; n /= dims[2]; *z = n % dims[1]; n /= dims[1]; *batch = n; } inline void GetOutShape(const DDim& x_dims, const DDim& kernel_dims, const std::vector& paddings, const std::vector& dilations, const std::vector& strides, DDim* out_dims) { PADDLE_ENFORCE_EQ( x_dims.size(), 5, phi::errors::InvalidArgument("the shape of x should be (N, D, H, W, C)")); PADDLE_ENFORCE_EQ(kernel_dims.size(), 5, phi::errors::InvalidArgument( "the shape of kernel should be (D, H, W, C, OC)")); // infer out shape (*out_dims)[0] = x_dims[0]; (*out_dims)[4] = kernel_dims[4]; for (int i = 1; i < 4; i++) { (*out_dims)[i] = (x_dims[i] + 2 * paddings[i - 1] - dilations[i - 1] * (kernel_dims[i - 1] - 1) - 1) / strides[i - 1] + 1; } } template void Conv3dKernel(const Context& dev_ctx, const SparseCooTensor& x, const DenseTensor& kernel, const std::vector& paddings, const std::vector& dilations, const std::vector& strides, const int groups, SparseCooTensor* out, DenseTensor* rulebook); template SparseCooTensor Conv3d(const Context& dev_ctx, const SparseCooTensor& x, const DenseTensor kernel, const std::vector& paddings, const std::vector& dilations, const std::vector& strides, const int groups, DenseTensor* rulebook) { DenseTensor indices = phi::Empty( dev_ctx, DenseTensorMeta(DataType::INT32, {1}, DataLayout::NCHW)); DenseTensor values = phi::Empty(dev_ctx, DenseTensorMeta(x.dtype(), {1}, x.layout())); SparseCooTensor coo(indices, values, x.dims()); Conv3dKernel( dev_ctx, x, kernel, paddings, dilations, strides, groups, &coo, rulebook); return coo; } } // namespace sparse } // namespace phi