/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/funcs/concat_and_split_functor.h" namespace phi { namespace funcs { /* * All tensors' dimension should be the same and the values of * each dimension must be the same, except the axis dimension. */ template struct ConcatFunctor { void operator()(const phi::CPUContext& context, const std::vector& input, int axis, phi::DenseTensor* output) { // TODO(zcd): Add input data validity checking size_t num = input.size(); int64_t rows = 1; auto dim_0 = input[0].dims(); for (int i = 0; i < axis; ++i) { rows *= dim_0[i]; } int64_t out_rows = rows, out_cols = 0; PADDLE_ENFORCE_NE( rows, 0, phi::errors::InvalidArgument("The input size should not be 0.")); std::vector input_cols(input.size()); for (size_t i = 0; i < num; ++i) { int64_t t_cols = input[i].numel() / rows; out_cols += t_cols; input_cols[i] = t_cols; } auto cpu_place = context.GetPlace(); // computation auto output_data = output->data(); int64_t col_idx = 0; for (size_t j = 0; j < num; ++j) { int64_t col_len = input_cols[j]; auto input_data = input[j].data(); for (int64_t k = 0; k < out_rows; ++k) { paddle::memory::Copy(cpu_place, output_data + k * out_cols + col_idx, cpu_place, input_data + k * col_len, sizeof(T) * col_len); } col_idx += col_len; } } }; /* * All tensors' dimension should be the same and the values of * each dimension must be the same, except the axis dimension. */ template struct SplitFunctor { public: void operator()(const phi::CPUContext& context, const phi::DenseTensor& input, const std::vector& ref_inputs, int axis, std::vector* outputs) { // NOTE(zhiqiu): split a tensor of shape [0,3,4] at axis=1, result in 3 // tensors of shape [0,1,4] if (input.numel() == 0) { return; } // TODO(zcd): Add input data validity checking size_t num = outputs->size(); int input_rows = 1; auto dim_0 = ref_inputs[0]->dims(); for (int i = 0; i < axis; ++i) { input_rows *= dim_0[i]; } int input_cols = 0; std::vector output_cols(outputs->size()); for (size_t i = 0; i < num; ++i) { int t_cols = ref_inputs[i]->numel() / input_rows; input_cols += t_cols; output_cols[i] = t_cols; } auto cpu_place = context.GetPlace(); // computation for (int k = 0; k < input_rows; ++k) { const T* src_ptr = input.data() + k * input_cols; int col_idx = 0; for (size_t j = 0; j < num; ++j) { int col_len = output_cols[j]; auto* out_tensor = outputs->at(j); if (out_tensor != nullptr) { T* dst_ptr = out_tensor->data() + k * col_len; paddle::memory::Copy(cpu_place, dst_ptr, cpu_place, src_ptr + col_idx, sizeof(T) * col_len); } col_idx += col_len; } } } }; #define DEFINE_FUNCTOR(type) \ template class ConcatFunctor; \ template class SplitFunctor; FOR_ALL_TYPES(DEFINE_FUNCTOR); } // namespace funcs } // namespace phi