/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. Indicesou may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/phi_utils.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/phi/kernels/funcs/pooling.h" #include "paddle/phi/kernels/funcs/strided_memcpy.h" namespace paddle { namespace operators { template class SppKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const phi::DenseTensor* in_x = context.Input("X"); auto* out = context.Output("Out"); int pyramid_height = context.template Attr("pyramid_height"); std::string pooling_type = context.template Attr("pooling_type"); out->mutable_data(context.GetPlace()); auto out_stride = phi::stride(out->dims()); int input_h = in_x->dims()[2]; int input_w = in_x->dims()[3]; size_t output_offset = 0; for (int p = 0; p < pyramid_height; ++p) { int bins = std::pow(2, p); int kernel_size_h = std::ceil(input_h / static_cast(bins)); int kernel_size_w = std::ceil(input_w / static_cast(bins)); int padding_h = (kernel_size_h * bins - input_h + 1) / 2; int padding_w = (kernel_size_w * bins - input_w + 1) / 2; std::vector kernel_size({kernel_size_h, kernel_size_w}); std::vector strides({kernel_size_h, kernel_size_w}); std::vector paddings({padding_h, padding_w}); // pooling output shape phi::DenseTensor out_level; std::vector output_shape_vec( {in_x->dims()[0], in_x->dims()[1], bins, bins}); framework::DDim output_shape(phi::make_ddim(output_shape_vec)); out_level.mutable_data(output_shape, context.GetPlace()); // pooling if (pooling_type == "max") { phi::funcs::Pool2dFunctor< typename framework::ConvertToPhiContext::TYPE, phi::funcs::MaxPool, T> pool_forward; phi::funcs::MaxPool max_process; pool_forward(context.template device_context(), *in_x, kernel_size, strides, paddings, true, false, &out_level, max_process); } else if (pooling_type == "avg") { phi::funcs::Pool2dFunctor< typename framework::ConvertToPhiContext::TYPE, phi::funcs::AvgPool, T> pool_forward; phi::funcs::AvgPool avg_process; pool_forward(context.template device_context(), *in_x, kernel_size, strides, paddings, true, false, &out_level, avg_process); } // flatten pooling output shape int output_flatten_w = in_x->dims()[1] * bins * bins; std::vector output_flatten_shape_vec( {in_x->dims()[0], output_flatten_w}); framework::DDim output_flatten_shape( phi::make_ddim(output_flatten_shape_vec)); out_level.Resize(output_flatten_shape); // concat auto out_level_stride = phi::stride(out_level.dims()); phi::funcs::StridedMemcpy( context.template device_context(), out_level.data(), out_level_stride, out_level.dims(), out_stride, out->data() + output_offset); output_offset += out_level.dims()[1] * out_level_stride[1]; } } }; template class SppGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { const phi::DenseTensor* in_x = context.Input("X"); const phi::DenseTensor* out = context.Input("Out"); const phi::DenseTensor* out_grad = context.Input(framework::GradVarName("Out")); phi::DenseTensor* in_x_grad = context.Output(framework::GradVarName("X")); int pyramid_height = context.template Attr("pyramid_height"); std::string pooling_type = context.template Attr("pooling_type"); auto& device_ctx = context.template device_context(); phi::funcs::SetConstant< typename framework::ConvertToPhiContext::TYPE, T> zero; in_x_grad->mutable_data(context.GetPlace()); zero(device_ctx, in_x_grad, static_cast(0)); auto out_stride = phi::stride(out->dims()); int input_h = in_x->dims()[2]; int input_w = in_x->dims()[3]; size_t out_offset = 0; for (int p = 0; p < pyramid_height; ++p) { int bins = std::pow(2, p); int kernel_size_h = std::ceil(input_h / static_cast(bins)); int kernel_size_w = std::ceil(input_w / static_cast(bins)); int padding_h = (kernel_size_h * bins - input_h + 1) / 2; int padding_w = (kernel_size_w * bins - input_w + 1) / 2; std::vector kernel_size({kernel_size_h, kernel_size_w}); std::vector strides({kernel_size_h, kernel_size_w}); std::vector paddings({padding_h, padding_w}); // split out and outgrad ... to flatten phi::DenseTensor out_level; phi::DenseTensor outgrad_level; int out_flatten_w = in_x->dims()[1] * bins * bins; std::vector out_flatten_shape_vec( {in_x->dims()[0], out_flatten_w}); framework::DDim out_flatten_shape(phi::make_ddim(out_flatten_shape_vec)); out_level.mutable_data(out_flatten_shape, context.GetPlace()); outgrad_level.mutable_data(out_flatten_shape, context.GetPlace()); auto flatten_stride = phi::stride(out_level.dims()); // memcpy phi::funcs::StridedMemcpy( context.template device_context(), out->data() + out_offset, out_stride, out_level.dims(), flatten_stride, out_level.data()); phi::funcs::StridedMemcpy( context.template device_context(), out_grad->data() + out_offset, out_stride, outgrad_level.dims(), flatten_stride, outgrad_level.data()); out_offset += out_level.dims()[1] * out_stride[1]; // flatten backward to nchw std::vector out_shape_vec({in_x->dims()[0], in_x->dims()[1]}); out_shape_vec.push_back( (input_h - kernel_size_h + 2 * padding_h) / kernel_size_h + 1); out_shape_vec.push_back( (input_w - kernel_size_w + 2 * padding_w) / kernel_size_w + 1); framework::DDim out_shape(phi::make_ddim(out_shape_vec)); out_level.ShareDataWith(out_level); out_level.Resize(out_shape); outgrad_level.ShareDataWith(outgrad_level); outgrad_level.Resize(out_shape); // pooling backward if (pooling_type == "max") { phi::funcs::MaxPool2dGradFunctor< typename framework::ConvertToPhiContext::TYPE, T> pool2d_backward; pool2d_backward(context.template device_context(), *in_x, *&out_level, *&outgrad_level, kernel_size, strides, paddings, in_x_grad); } else if (pooling_type == "avg") { phi::funcs::Pool2dGradFunctor< typename framework::ConvertToPhiContext::TYPE, phi::funcs::AvgPoolGrad, T> pool_backward; phi::funcs::AvgPoolGrad avg_process; pool_backward(context.template device_context(), *in_x, *&out_level, *&outgrad_level, kernel_size, strides, paddings, true, false, in_x_grad, avg_process); } } } }; } // namespace operators } // namespace paddle