// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/backends/gpu/gpu_info.h" #include "paddle/phi/core/enforce.h" static std::once_flag g_device_props_size_init_flag; static std::vector> g_device_props_init_flags; static std::vector g_device_props; namespace phi { namespace backends { namespace gpu { int DnnVersion() { if (!dynload::HasCUDNN()) return -1; return dynload::cudnnGetVersion(); } static int GetGPUDeviceCountImpl() { int driverVersion = 0; cudaError_t status = cudaDriverGetVersion(&driverVersion); if (!(status == gpuSuccess && driverVersion != 0)) { // No GPU driver VLOG(2) << "GPU Driver Version can't be detected. No GPU driver!"; return 0; } const auto *cuda_visible_devices = std::getenv("CUDA_VISIBLE_DEVICES"); if (cuda_visible_devices != nullptr) { std::string cuda_visible_devices_str(cuda_visible_devices); if (!cuda_visible_devices_str.empty()) { cuda_visible_devices_str.erase( 0, cuda_visible_devices_str.find_first_not_of('\'')); cuda_visible_devices_str.erase( cuda_visible_devices_str.find_last_not_of('\'') + 1); cuda_visible_devices_str.erase( 0, cuda_visible_devices_str.find_first_not_of('\"')); cuda_visible_devices_str.erase( cuda_visible_devices_str.find_last_not_of('\"') + 1); } if (std::all_of(cuda_visible_devices_str.begin(), cuda_visible_devices_str.end(), [](char ch) { return ch == ' '; })) { VLOG(2) << "CUDA_VISIBLE_DEVICES is set to be " "empty. No GPU detected."; return 0; } } int count; PADDLE_ENFORCE_GPU_SUCCESS(cudaGetDeviceCount(&count)); return count; } int GetGPUDeviceCount() { // cache the count static auto dev_cnt = GetGPUDeviceCountImpl(); return dev_cnt; } int GetGPUComputeCapability(int id) { PADDLE_ENFORCE_LT( id, GetGPUDeviceCount(), phi::errors::InvalidArgument("Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetGPUDeviceCount())); int major, minor; auto major_error_code = cudaDeviceGetAttribute(&major, cudaDevAttrComputeCapabilityMajor, id); auto minor_error_code = cudaDeviceGetAttribute(&minor, cudaDevAttrComputeCapabilityMinor, id); PADDLE_ENFORCE_GPU_SUCCESS(major_error_code); PADDLE_ENFORCE_GPU_SUCCESS(minor_error_code); return major * 10 + minor; } int GetGPURuntimeVersion(int id) { PADDLE_ENFORCE_LT( id, GetGPUDeviceCount(), phi::errors::InvalidArgument("Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetGPUDeviceCount())); int runtime_version = 0; PADDLE_ENFORCE_GPU_SUCCESS(cudaRuntimeGetVersion(&runtime_version)); return runtime_version; } int GetGPUDriverVersion(int id) { PADDLE_ENFORCE_LT( id, GetGPUDeviceCount(), phi::errors::InvalidArgument("Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetGPUDeviceCount())); int driver_version = 0; PADDLE_ENFORCE_GPU_SUCCESS(cudaDriverGetVersion(&driver_version)); return driver_version; } bool TensorCoreAvailable() { int device = GetCurrentDeviceId(); int driver_version = GetGPUComputeCapability(device); return driver_version >= 70; } int GetGPUMultiProcessors(int id) { PADDLE_ENFORCE_LT( id, GetGPUDeviceCount(), phi::errors::InvalidArgument("Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetGPUDeviceCount())); int count; PADDLE_ENFORCE_GPU_SUCCESS( cudaDeviceGetAttribute(&count, cudaDevAttrMultiProcessorCount, id)); return count; } int GetGPUMaxThreadsPerMultiProcessor(int id) { PADDLE_ENFORCE_LT( id, GetGPUDeviceCount(), phi::errors::InvalidArgument("Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetGPUDeviceCount())); int count; PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceGetAttribute( &count, cudaDevAttrMaxThreadsPerMultiProcessor, id)); return count; } int GetGPUMaxThreadsPerBlock(int id) { PADDLE_ENFORCE_LT( id, GetGPUDeviceCount(), phi::errors::InvalidArgument("Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetGPUDeviceCount())); int count; PADDLE_ENFORCE_GPU_SUCCESS( cudaDeviceGetAttribute(&count, cudaDevAttrMaxThreadsPerBlock, id)); return count; } int GetCurrentDeviceId() { int device_id; PADDLE_ENFORCE_GPU_SUCCESS(cudaGetDevice(&device_id)); return device_id; } std::array GetGpuMaxGridDimSize(int id) { PADDLE_ENFORCE_LT( id, GetGPUDeviceCount(), phi::errors::InvalidArgument("Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetGPUDeviceCount())); std::array ret; int size; auto error_code_x = cudaDeviceGetAttribute(&size, cudaDevAttrMaxGridDimX, id); PADDLE_ENFORCE_GPU_SUCCESS(error_code_x); ret[0] = size; auto error_code_y = cudaDeviceGetAttribute(&size, cudaDevAttrMaxGridDimY, id); PADDLE_ENFORCE_GPU_SUCCESS(error_code_y); ret[1] = size; auto error_code_z = cudaDeviceGetAttribute(&size, cudaDevAttrMaxGridDimZ, id); PADDLE_ENFORCE_GPU_SUCCESS(error_code_z); ret[2] = size; return ret; } std::pair GetGpuStreamPriorityRange() { int least_priority, greatest_priority; PADDLE_ENFORCE_GPU_SUCCESS( cudaDeviceGetStreamPriorityRange(&least_priority, &greatest_priority)); return std::make_pair(least_priority, greatest_priority); } const gpuDeviceProp &GetDeviceProperties(int id) { std::call_once(g_device_props_size_init_flag, [&] { int gpu_num = 0; gpu_num = GetGPUDeviceCount(); g_device_props_init_flags.resize(gpu_num); g_device_props.resize(gpu_num); for (int i = 0; i < gpu_num; ++i) { g_device_props_init_flags[i] = std::make_unique(); } }); if (id == -1) { id = GetCurrentDeviceId(); } if (id < 0 || id >= static_cast(g_device_props.size())) { PADDLE_THROW(phi::errors::OutOfRange( "The device id %d is out of range [0, %d), where %d is the number of " "devices on this machine. Because the device id should be greater than " "or equal to zero and smaller than the number of gpus. Please input " "appropriate device again!", id, static_cast(g_device_props.size()), static_cast(g_device_props.size()))); } std::call_once(*(g_device_props_init_flags[id]), [&] { PADDLE_ENFORCE_GPU_SUCCESS( cudaGetDeviceProperties(&g_device_props[id], id)); }); return g_device_props[id]; } void SetDeviceId(int id) { // TODO(qijun): find a better way to cache the cuda device count PADDLE_ENFORCE_LT( id, GetGPUDeviceCount(), phi::errors::InvalidArgument("Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", id, GetGPUDeviceCount())); PADDLE_RETRY_CUDA_SUCCESS(cudaSetDevice(id)); VLOG(4) << "SetDeviceId " << id; } void GpuMemcpyAsync(void *dst, const void *src, size_t count, gpuMemcpyKind kind, gpuStream_t stream) { PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpyAsync(dst, src, count, kind, stream)); } void GpuMemcpySync(void *dst, const void *src, size_t count, gpuMemcpyKind kind) { PADDLE_ENFORCE_GPU_SUCCESS(cudaMemcpy(dst, src, count, kind)); } void GpuMemcpyPeerAsync(void *dst, int dst_device, const void *src, int src_device, size_t count, gpuStream_t stream) { PADDLE_ENFORCE_GPU_SUCCESS( cudaMemcpyPeerAsync(dst, dst_device, src, src_device, count, stream)); } void GpuMemcpyPeerSync( void *dst, int dst_device, const void *src, int src_device, size_t count) { PADDLE_ENFORCE_GPU_SUCCESS( cudaMemcpyPeer(dst, dst_device, src, src_device, count)); } void GpuMemsetAsync(void *dst, int value, size_t count, gpuStream_t stream) { PADDLE_ENFORCE_GPU_SUCCESS(cudaMemsetAsync(dst, value, count, stream)); } void GpuStreamSync(gpuStream_t stream) { PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamSynchronize(stream)); } void GpuDestroyStream(gpuStream_t stream) { PADDLE_ENFORCE_GPU_SUCCESS(cudaStreamDestroy(stream)); } void GpuDeviceSync() { PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceSynchronize()); } gpuError_t GpuGetLastError() { return cudaGetLastError(); } // See // https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#um-requirements // for more detail about managed memory requirements bool IsGPUManagedMemorySupported(int dev_id) { PADDLE_ENFORCE_LT( dev_id, GetGPUDeviceCount(), phi::errors::InvalidArgument("Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", dev_id, GetGPUDeviceCount())); #if defined(__linux__) || defined(_WIN32) int ManagedMemoryAttr; PADDLE_ENFORCE_GPU_SUCCESS(cudaDeviceGetAttribute( &ManagedMemoryAttr, cudaDevAttrManagedMemory, dev_id)); return ManagedMemoryAttr != 0; #else return false; #endif } bool IsGPUManagedMemoryOversubscriptionSupported(int dev_id) { PADDLE_ENFORCE_LT( dev_id, GetGPUDeviceCount(), phi::errors::InvalidArgument("Device id must be less than GPU count, " "but received id is: %d. GPU count is: %d.", dev_id, GetGPUDeviceCount())); #ifdef __linux__ return IsGPUManagedMemorySupported(dev_id) && GetGPUComputeCapability(dev_id) >= 60; #else return false; #endif } } // namespace gpu } // namespace backends } // namespace phi