// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/unique_consecutive_kernel.h" #include "paddle/phi/kernels/cpu/unique_consecutive_functor.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/errors.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/utils/data_type.h" namespace phi { template void UniqueConsecutiveKernel(const Context& dev_ctx, const DenseTensor& x, bool return_inverse, bool return_counts, const std::vector& axis, int dtype, DenseTensor* out, DenseTensor* index, DenseTensor* counts) { auto data_type = var_type_map[dtype]; if (data_type == phi::DataType::INT32) { PADDLE_ENFORCE_LE( x.numel(), INT_MAX, phi::errors::InvalidArgument( "The number of elements in Input(X) should be less than or " "equal to INT_MAX, but received num is %d. Please set `dtype` to " "int64.", x.numel())); } if (axis.empty()) { phi::VisitDataTypeTiny( data_type, UniqueConsecutiveFlattenedTensorFunctor( dev_ctx, x, out, return_inverse, return_counts, index, counts)); } else { int valid_axis = axis[0]; phi::VisitDataTypeTiny( data_type, UniqueConsecutiveDimFunctor(dev_ctx, x, out, valid_axis, return_inverse, return_counts, index, counts)); } } } // namespace phi PD_REGISTER_KERNEL(unique_consecutive, CPU, ALL_LAYOUT, phi::UniqueConsecutiveKernel, float, double, int32_t, int64_t) {}