// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/tests/api/tester_helper.h" namespace paddle { namespace inference { namespace analysis { struct DataRecord { std::vector data; std::vector lod; // for dataset and nextbatch size_t batch_iter{0}; std::vector> batched_lods; std::vector> batched_datas; std::vector> datasets; DataRecord() = default; explicit DataRecord(const std::string &path, int batch_size = 1) { Load(path); Prepare(batch_size); batch_iter = 0; } void Load(const std::string &path) { std::ifstream file(path); std::string line; int num_lines = 0; datasets.resize(0); while (std::getline(file, line)) { num_lines++; std::vector data; split(line, ';', &data); std::vector words_ids; split_to_int64(data[1], ' ', &words_ids); datasets.emplace_back(words_ids); } } void Prepare(int bs) { if (bs == 1) { batched_datas = datasets; for (auto one_sentence : datasets) { batched_lods.push_back({0, one_sentence.size()}); } } else { std::vector one_batch; std::vector lod{0}; int bs_id = 0; for (auto one_sentence : datasets) { bs_id++; one_batch.insert(one_batch.end(), one_sentence.begin(), one_sentence.end()); lod.push_back(lod.back() + one_sentence.size()); if (bs_id == bs) { bs_id = 0; batched_datas.push_back(one_batch); batched_lods.push_back(lod); one_batch.clear(); one_batch.resize(0); lod.clear(); lod.resize(0); lod.push_back(0); } } if (one_batch.size() != 0) { batched_datas.push_back(one_batch); batched_lods.push_back(lod); } } } DataRecord NextBatch() { DataRecord data; data.data = batched_datas[batch_iter]; data.lod = batched_lods[batch_iter]; batch_iter++; if (batch_iter >= batched_datas.size()) { batch_iter = 0; } return data; } }; void GetOneBatch(std::vector *input_slots, DataRecord *data, int batch_size) { auto one_batch = data->NextBatch(); PaddleTensor input_tensor; input_tensor.name = "word"; input_tensor.dtype = PaddleDType::INT64; TensorAssignData(&input_tensor, {one_batch.data}, one_batch.lod); PADDLE_ENFORCE_EQ(batch_size, static_cast(one_batch.lod.size() - 1)); input_slots->assign({input_tensor}); } void SetConfig(AnalysisConfig *cfg) { cfg->SetModel(FLAGS_infer_model); cfg->DisableGpu(); cfg->SwitchSpecifyInputNames(); cfg->SwitchIrOptim(); } void SetInput(std::vector> *inputs) { DataRecord data(FLAGS_infer_data, FLAGS_batch_size); std::vector input_slots; int epoch = FLAGS_test_all_data ? data.batched_datas.size() : 1; LOG(INFO) << "number of samples: " << epoch; for (int bid = 0; bid < epoch; ++bid) { GetOneBatch(&input_slots, &data, FLAGS_batch_size); (*inputs).emplace_back(input_slots); } } // Easy for profiling independently. TEST(Analyzer_LAC, profile) { AnalysisConfig cfg; SetConfig(&cfg); std::vector outputs; std::vector> input_slots_all; SetInput(&input_slots_all); TestPrediction(reinterpret_cast(&cfg), input_slots_all, &outputs, FLAGS_num_threads); if (FLAGS_num_threads == 1 && !FLAGS_test_all_data) { // the first inference result const int64_t lac_ref_data[] = { 24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25, 25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43, 44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39, 14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23}; PADDLE_ENFORCE_EQ(outputs.size(), 1UL); size_t size = GetSize(outputs[0]); size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t); PADDLE_ENFORCE_GE(size, batch1_size); int64_t *pdata = static_cast(outputs[0].data.data()); for (size_t i = 0; i < batch1_size; ++i) { EXPECT_EQ(pdata[i], lac_ref_data[i]); } } } // Check the fuse status TEST(Analyzer_LAC, fuse_statis) { AnalysisConfig cfg; SetConfig(&cfg); int num_ops; auto predictor = CreatePaddlePredictor(cfg); auto fuse_statis = GetFuseStatis( static_cast(predictor.get()), &num_ops); ASSERT_TRUE(fuse_statis.count("fc_fuse")); ASSERT_TRUE(fuse_statis.count("fc_gru_fuse")); EXPECT_EQ(fuse_statis.at("fc_fuse"), 1); EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 4); EXPECT_EQ(num_ops, 11); } // Compare result of NativeConfig and AnalysisConfig TEST(Analyzer_LAC, compare) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareNativeAndAnalysis( reinterpret_cast(&cfg), input_slots_all); } // Compare Deterministic result TEST(Analyzer_LAC, compare_determine) { AnalysisConfig cfg; SetConfig(&cfg); std::vector> input_slots_all; SetInput(&input_slots_all); CompareDeterministic(reinterpret_cast(&cfg), input_slots_all); } } // namespace analysis } // namespace inference } // namespace paddle