// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/accuracy_kernel.h" #include #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void AccuracyRawKernel(const Context& dev_ctx, const DenseTensor& inference, const DenseTensor& indices, const DenseTensor& label, DenseTensor* accuracy, DenseTensor* correct, DenseTensor* total) { int* correct_data = dev_ctx.template Alloc(correct); int* total_data = dev_ctx.template Alloc(total); float* accuracy_data = dev_ctx.template Alloc(accuracy); const int64_t* indices_data = indices.data(); const int64_t* label_data = label.data(); size_t num_samples = inference.dims()[0]; size_t class_dim = inference.dims()[1]; *accuracy_data = 0.0f; if (num_samples == 0) { return; } int num_correct = 0; // assume inference is already the topk of the output for (size_t i = 0; i < num_samples; ++i) { PADDLE_ENFORCE_GE( label_data[i], 0, phi::errors::InvalidArgument( "label of AccuracyOp must >= 0, But received label[%d] is %d", i, label_data[i])); for (size_t j = 0; j < class_dim; ++j) { if (indices_data[i * class_dim + j] == label_data[i]) { ++num_correct; break; } } } *correct_data = num_correct; *total_data = num_samples; *accuracy_data = static_cast(num_correct) / static_cast(num_samples); } } // namespace phi // TODO(add supported dtype.) PD_REGISTER_KERNEL( accuracy, CPU, ALL_LAYOUT, phi::AccuracyRawKernel, float, double) {}