/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template using EigenMatrix = framework::EigenMatrix; template using EigenVector = framework::EigenVector; template class CosSimKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { // get Tensor auto* in_x = context.Input("X"); auto* in_y = context.Input("Y"); auto* out_z = context.Output("Out"); auto* out_x_norm = context.Output("XNorm"); auto* out_y_norm = context.Output("YNorm"); out_z->mutable_data(context.GetPlace()); out_x_norm->mutable_data(context.GetPlace()); out_y_norm->mutable_data(context.GetPlace()); // convert Tensor to Eigen Tensor int rows_x = in_x->dims()[0]; int rows_y = in_y->dims()[0]; auto x = EigenMatrix::Reshape(*in_x, 1); auto y = EigenMatrix::Reshape(*in_y, 1); auto z = EigenVector::Flatten(*out_z); auto x_norm = EigenVector::Flatten(*out_x_norm); auto y_norm = EigenVector::Flatten(*out_y_norm); // compute auto& place = *context.template device_context().eigen_device(); auto row_along = Eigen::array({{1}}); x_norm.device(place) = x.square().sum(row_along).sqrt(); y_norm.device(place) = y.square().sum(row_along).sqrt(); if (rows_x == rows_y) { auto xy = (x * y).sum(Eigen::array({{1}})); z.device(place) = xy / x_norm / y_norm; } else { Eigen::DSizes bcast(rows_x, 1); auto xy = (x * y.broadcast(bcast)).sum(row_along); z.device(place) = xy / x_norm / y_norm.broadcast(bcast); } } }; template class CosSimGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { // get Tensor auto* in_x = context.Input("X"); auto* in_y = context.Input("Y"); auto* in_z = context.Input("Out"); auto* in_x_norm = context.Input("XNorm"); auto* in_y_norm = context.Input("YNorm"); auto* out_grad_x = context.Output(framework::GradVarName("X")); auto* out_grad_y = context.Output(framework::GradVarName("Y")); auto* in_grad_z = context.Input(framework::GradVarName("Out")); // convert Tensor to Eigen Tensor auto x = EigenMatrix::Reshape(*in_x, 1); auto y = EigenMatrix::Reshape(*in_y, 1); auto z = EigenMatrix::Reshape(*in_z, 1); auto x_norm = EigenMatrix::Reshape(*in_x_norm, 1); auto y_norm = EigenMatrix::Reshape(*in_y_norm, 1); auto dz = EigenMatrix::Reshape(*in_grad_z, 1); // compute gradident int rows_x = in_x->dims()[0]; int rows_y = in_y->dims()[0]; int cols = framework::product(in_x->dims()) / rows_x; Eigen::DSizes bcast_cols(1, cols); auto z_bcast = z.broadcast(bcast_cols); auto dz_bcast = dz.broadcast(bcast_cols); auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast_cols); auto& place = *context.template device_context().eigen_device(); if (rows_x == rows_y) { auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_cols); auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast_cols); // compute dx if (out_grad_x) { out_grad_x->mutable_data(context.GetPlace()); auto dx = EigenMatrix::Reshape(*out_grad_x, 1); auto grad = y / norm_prod_bcast - z_bcast * x / x_snorm_bcast; dx.device(place) = dz_bcast * grad; } // compute dy if (out_grad_y) { out_grad_y->mutable_data(context.GetPlace()); auto dy = EigenMatrix::Reshape(*out_grad_y, 1); auto grad = x / norm_prod_bcast - z_bcast * y / y_snorm_bcast; dy.device(place) = dz_bcast * grad; } } else { Eigen::DSizes bcast_rows(rows_x, 1); Eigen::DSizes bcast_rows_cols(rows_x, cols); auto y_bcast = y.broadcast(bcast_rows); auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_rows_cols); auto norm_prod_bcast = (x_norm * y_norm.eval().broadcast(bcast_rows)) .eval() .broadcast(bcast_cols); // compute dx if (out_grad_x) { out_grad_x->mutable_data(context.GetPlace()); auto dx = EigenMatrix::Reshape(*out_grad_x, 1); auto grad = y_bcast / norm_prod_bcast - z_bcast * x / x_snorm_bcast; dx.device(place) = dz_bcast * grad; } // compute dy if (out_grad_y) { out_grad_y->mutable_data(context.GetPlace()); auto dy = EigenVector::Flatten(*out_grad_y); auto grad = x / norm_prod_bcast - z_bcast * y_bcast / y_snorm_bcast; dy.device(place) = (dz_bcast * grad).sum(Eigen::array({{0}})); } } } }; } // namespace operators } // namespace paddle