# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import collections import random import math import functools import numbers import numpy as np from paddle.utils import try_import if sys.version_info < (3, 3): Sequence = collections.Sequence Iterable = collections.Iterable else: Sequence = collections.abc.Sequence Iterable = collections.abc.Iterable __all__ = ['flip', 'resize', 'pad', 'rotate', 'to_grayscale'] def keepdims(func): """Keep the dimension of input images unchanged""" @functools.wraps(func) def wrapper(image, *args, **kwargs): if len(image.shape) != 3: raise ValueError("Expect image have 3 dims, but got {} dims".format( len(image.shape))) ret = func(image, *args, **kwargs) if len(ret.shape) == 2: ret = ret[:, :, np.newaxis] return ret return wrapper @keepdims def flip(image, code): """ Accordding to the code (the type of flip), flip the input image Args: image (np.ndarray): Input image, with (H, W, C) shape code (int): Code that indicates the type of flip. -1 : Flip horizontally and vertically 0 : Flip vertically 1 : Flip horizontally Examples: .. code-block:: python import numpy as np from paddle.vision.transforms import functional as F fake_img = np.random.rand(224, 224, 3) # flip horizontally and vertically F.flip(fake_img, -1) # flip vertically F.flip(fake_img, 0) # flip horizontally F.flip(fake_img, 1) """ cv2 = try_import('cv2') return cv2.flip(image, flipCode=code) @keepdims def resize(img, size, interpolation=1): """ resize the input data to given size Args: input (np.ndarray): Input data, could be image or masks, with (H, W, C) shape size (int|list|tuple): Target size of input data, with (height, width) shape. interpolation (int, optional): Interpolation method. 0 : cv2.INTER_NEAREST 1 : cv2.INTER_LINEAR 2 : cv2.INTER_CUBIC 3 : cv2.INTER_AREA 4 : cv2.INTER_LANCZOS4 5 : cv2.INTER_LINEAR_EXACT 7 : cv2.INTER_MAX 8 : cv2.WARP_FILL_OUTLIERS 16: cv2.WARP_INVERSE_MAP Examples: .. code-block:: python import numpy as np from paddle.vision.transforms import functional as F fake_img = np.random.rand(256, 256, 3) F.resize(fake_img, 224) F.resize(fake_img, (200, 150)) """ cv2 = try_import('cv2') if isinstance(interpolation, Sequence): interpolation = random.choice(interpolation) if isinstance(size, int): h, w = img.shape[:2] if (w <= h and w == size) or (h <= w and h == size): return img if w < h: ow = size oh = int(size * h / w) return cv2.resize(img, (ow, oh), interpolation=interpolation) else: oh = size ow = int(size * w / h) return cv2.resize(img, (ow, oh), interpolation=interpolation) else: return cv2.resize(img, size[::-1], interpolation=interpolation) @keepdims def pad(img, padding, fill=(0, 0, 0), padding_mode='constant'): """Pads the given CV Image on all sides with speficified padding mode and fill value. Args: img (np.ndarray): Image to be padded. padding (int|tuple): Padding on each border. If a single int is provided this is used to pad all borders. If tuple of length 2 is provided this is the padding on left/right and top/bottom respectively. If a tuple of length 4 is provided this is the padding for the left, top, right and bottom borders respectively. fill (int|tuple): Pixel fill value for constant fill. Default is 0. If a tuple of length 3, it is used to fill R, G, B channels respectively. This value is only used when the padding_mode is constant padding_mode: Type of padding. Should be: constant, edge, reflect or symmetric. Default is constant. ``constant`` means padding with a constant value, this value is specified with fill. ``edge`` means padding with the last value at the edge of the image. ``reflect`` means padding with reflection of image (without repeating the last value on the edge) padding ``[1, 2, 3, 4]`` with 2 elements on both sides in reflect mode will result in ``[3, 2, 1, 2, 3, 4, 3, 2]``. ``symmetric`` menas pads with reflection of image (repeating the last value on the edge) padding ``[1, 2, 3, 4]`` with 2 elements on both sides in symmetric mode will result in ``[2, 1, 1, 2, 3, 4, 4, 3]``. Returns: numpy ndarray: Padded image. Examples: .. code-block:: python import numpy as np from paddle.vision.transforms.functional import pad fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = pad(fake_img, 2) print(fake_img.shape) """ if not isinstance(padding, (numbers.Number, list, tuple)): raise TypeError('Got inappropriate padding arg') if not isinstance(fill, (numbers.Number, str, list, tuple)): raise TypeError('Got inappropriate fill arg') if not isinstance(padding_mode, str): raise TypeError('Got inappropriate padding_mode arg') if isinstance(padding, collections.Sequence) and len(padding) not in [2, 4]: raise ValueError( "Padding must be an int or a 2, or 4 element tuple, not a " + "{} element tuple".format(len(padding))) assert padding_mode in ['constant', 'edge', 'reflect', 'symmetric'], \ 'Expected padding mode be either constant, edge, reflect or symmetric, but got {}'.format(padding_mode) cv2 = try_import('cv2') PAD_MOD = { 'constant': cv2.BORDER_CONSTANT, 'edge': cv2.BORDER_REPLICATE, 'reflect': cv2.BORDER_DEFAULT, 'symmetric': cv2.BORDER_REFLECT } if isinstance(padding, int): pad_left = pad_right = pad_top = pad_bottom = padding if isinstance(padding, collections.Sequence) and len(padding) == 2: pad_left = pad_right = padding[0] pad_top = pad_bottom = padding[1] if isinstance(padding, collections.Sequence) and len(padding) == 4: pad_left, pad_top, pad_right, pad_bottom = padding if isinstance(fill, numbers.Number): fill = (fill, ) * (2 * len(img.shape) - 3) if padding_mode == 'constant': assert (len(fill) == 3 and len(img.shape) == 3) or (len(fill) == 1 and len(img.shape) == 2), \ 'channel of image is {} but length of fill is {}'.format(img.shape[-1], len(fill)) img = cv2.copyMakeBorder( src=img, top=pad_top, bottom=pad_bottom, left=pad_left, right=pad_right, borderType=PAD_MOD[padding_mode], value=fill) return img @keepdims def rotate(img, angle, interpolation=1, expand=False, center=None): """Rotates the image by angle. Args: img (numpy.ndarray): Image to be rotated. angle (float|int): In degrees clockwise order. interpolation (int, optional): Interpolation method. Default: 1. 0 : cv2.INTER_NEAREST 1 : cv2.INTER_LINEAR 2 : cv2.INTER_CUBIC 3 : cv2.INTER_AREA 4 : cv2.INTER_LANCZOS4 5 : cv2.INTER_LINEAR_EXACT 7 : cv2.INTER_MAX 8 : cv2.WARP_FILL_OUTLIERS 16: cv2.WARP_INVERSE_MAP expand (bool|optional): Optional expansion flag. If true, expands the output image to make it large enough to hold the entire rotated image. If false or omitted, make the output image the same size as the input image. Note that the expand flag assumes rotation around the center and no translation. center (2-tuple|optional): Optional center of rotation. Origin is the upper left corner. Default is the center of the image. Returns: numpy ndarray: Rotated image. Examples: .. code-block:: python import numpy as np from paddle.vision.transforms.functional import rotate fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = rotate(fake_img, 10) print(fake_img.shape) """ cv2 = try_import('cv2') dtype = img.dtype h, w, _ = img.shape point = center or (w / 2, h / 2) M = cv2.getRotationMatrix2D(point, angle=-angle, scale=1) if expand: if center is None: cos = np.abs(M[0, 0]) sin = np.abs(M[0, 1]) nW = int((h * sin) + (w * cos)) nH = int((h * cos) + (w * sin)) M[0, 2] += (nW / 2) - point[0] M[1, 2] += (nH / 2) - point[1] dst = cv2.warpAffine(img, M, (nW, nH)) else: xx = [] yy = [] for point in (np.array([0, 0, 1]), np.array([w - 1, 0, 1]), np.array([w - 1, h - 1, 1]), np.array([0, h - 1, 1])): target = np.dot(M, point) xx.append(target[0]) yy.append(target[1]) nh = int(math.ceil(max(yy)) - math.floor(min(yy))) nw = int(math.ceil(max(xx)) - math.floor(min(xx))) M[0, 2] += (nw - w) / 2 M[1, 2] += (nh - h) / 2 dst = cv2.warpAffine(img, M, (nw, nh), flags=interpolation) else: dst = cv2.warpAffine(img, M, (w, h), flags=interpolation) return dst.astype(dtype) @keepdims def to_grayscale(img, num_output_channels=1): """Converts image to grayscale version of image. Args: img (numpy.ndarray): Image to be converted to grayscale. Returns: numpy.ndarray: Grayscale version of the image. if num_output_channels == 1, returned image is single channel if num_output_channels == 3, returned image is 3 channel with r == g == b Examples: .. code-block:: python import numpy as np from paddle.vision.transforms.functional import to_grayscale fake_img = np.random.rand(500, 500, 3).astype('float32') fake_img = to_grayscale(fake_img) print(fake_img.shape) """ cv2 = try_import('cv2') if num_output_channels == 1: img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) elif num_output_channels == 3: img = cv2.cvtColor( cv2.cvtColor(img, cv2.COLOR_RGB2GRAY), cv2.COLOR_GRAY2RGB) else: raise ValueError('num_output_channels should be either 1 or 3') return img