# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import time import random import tempfile import shutil import numpy as np import paddle from paddle import Model from paddle.static import InputSpec from paddle.vision.models import LeNet from paddle.hapi.callbacks import config_callbacks from paddle.vision.datasets import MNIST from paddle.metric import Accuracy from paddle.nn.layer.loss import CrossEntropyLoss class MnistDataset(MNIST): def __init__(self, mode, return_label=True, sample_num=None): super(MnistDataset, self).__init__(mode=mode) self.return_label = return_label if sample_num: self.images = self.images[:sample_num] self.labels = self.labels[:sample_num] def __getitem__(self, idx): img, label = self.images[idx], self.labels[idx] img = np.reshape(img, [1, 28, 28]) if self.return_label: return img, np.array(self.labels[idx]).astype('int64') return img, def __len__(self): return len(self.images) class TestCallbacks(unittest.TestCase): def setUp(self): self.save_dir = tempfile.mkdtemp() def tearDown(self): shutil.rmtree(self.save_dir) def test_earlystopping(self): paddle.seed(2020) for dynamic in [True, False]: paddle.enable_static if not dynamic else None device = paddle.set_device('cpu') sample_num = 100 train_dataset = MnistDataset(mode='train', sample_num=sample_num) val_dataset = MnistDataset(mode='test', sample_num=sample_num) net = LeNet() optim = paddle.optimizer.Adam( learning_rate=0.001, parameters=net.parameters()) inputs = [InputSpec([None, 1, 28, 28], 'float32', 'x')] labels = [InputSpec([None, 1], 'int64', 'label')] model = Model(net, inputs=inputs, labels=labels) model.prepare( optim, loss=CrossEntropyLoss(reduction="sum"), metrics=[Accuracy()]) callbacks_0 = paddle.callbacks.EarlyStopping( 'loss', mode='min', patience=1, verbose=1, min_delta=0, baseline=None, save_best_model=True) callbacks_1 = paddle.callbacks.EarlyStopping( 'acc', mode='auto', patience=1, verbose=1, min_delta=0, baseline=0, save_best_model=True) callbacks_2 = paddle.callbacks.EarlyStopping( 'loss', mode='auto_', patience=1, verbose=1, min_delta=0, baseline=None, save_best_model=True) callbacks_3 = paddle.callbacks.EarlyStopping( 'acc_', mode='max', patience=1, verbose=1, min_delta=0, baseline=0, save_best_model=True) model.fit( train_dataset, val_dataset, batch_size=64, save_freq=10, save_dir=self.save_dir, epochs=10, verbose=0, callbacks=[callbacks_0, callbacks_1, callbacks_2, callbacks_3]) # Test for no val_loader model.fit(train_dataset, batch_size=64, save_freq=10, save_dir=self.save_dir, epochs=10, verbose=0, callbacks=[callbacks_0]) if __name__ == '__main__': unittest.main()