# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid as fluid import paddle.fluid.layers as layers import paddle.fluid.core as core import gradient_checker from decorator_helper import prog_scope class TestMulGradCheck(unittest.TestCase): @prog_scope() def func(self, place): prog = fluid.Program() with fluid.program_guard(prog): x = layers.create_parameter(dtype="float64", shape=[2, 8], name='x') y = layers.create_parameter(dtype="float64", shape=[8, 4], name='y') z = layers.mul(x=x, y=y) gradient_checker.grad_check([x, y], z, place=place) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestReluDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 8] eps = 0.005 dtype = np.float64 x = layers.data('x', shape, False, dtype) x.persistable = True y = layers.relu(x) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) x_arr[np.abs(x_arr) < 0.005] = 0.02 gradient_checker.double_grad_check( [x], y, x_init=x_arr, place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) class TestLeakyReluDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): shape = [3, 7] eps = 0.005 alpha = 0.2 dtype = np.float64 x = layers.data('x', shape, False, dtype) x.persistable = True y = layers.leaky_relu(x, alpha=alpha) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) x_arr[np.abs(x_arr) < 0.005] = 0.02 gradient_checker.double_grad_check( [x], y, x_init=x_arr, place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) class TestConvDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): shape = [2, 4, 14, 16] eps = 0.005 dtype = np.float64 x = layers.data('x', shape, False, dtype) y = layers.conv2d(x, 4, 1, bias_attr=False) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) w = fluid.default_main_program().global_block().all_parameters() w_arr = [] for p in w: w_arr.append(np.random.uniform(-1, 1, p.shape).astype(dtype)) gradient_checker.double_grad_check( [x] + w, y, x_init=[x_arr] + w_arr, place=place, eps=eps) def test_grad(self): if core.is_compiled_with_cuda(): places = [fluid.CUDAPlace(0)] for p in places: self.func(p) class TestSquareDoubleGradCheck(unittest.TestCase): @prog_scope() def func(self, place): # the shape of input variable shoule be clearly specified, not inlcude -1. shape = [17, 23] eps = 0.005 dtype = np.float64 x = layers.data('x', shape, False, dtype) x.persistable = True y = layers.square(x) x_arr = np.random.uniform(-1, 1, shape).astype(dtype) gradient_checker.double_grad_check( [x], y, x_init=x_arr, place=place, eps=eps) def test_grad(self): places = [fluid.CPUPlace()] if core.is_compiled_with_cuda(): places.append(fluid.CUDAPlace(0)) for p in places: self.func(p) if __name__ == "__main__": unittest.main()