// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/api/api_anakin_engine.h" #ifdef PADDLE_WITH_CUDA #include #endif #include #include #include #include #include #include #include "framework/core/net/net.h" #include "framework/operators/ops.h" #include "saber/funcs/timer.h" namespace paddle { template PaddleInferenceAnakinPredictor::PaddleInferenceAnakinPredictor( const AnakinConfig &config) { CHECK(Init(config)); } template <> PaddleInferenceAnakinPredictor::PaddleInferenceAnakinPredictor( const AnakinConfig &config) { omp_set_dynamic(0); omp_set_num_threads(1); mkl_set_num_threads(1); CHECK(Init(config)); } template bool PaddleInferenceAnakinPredictor::Init(const AnakinConfig &config) { if (!(graph_.load(config.model_file))) { VLOG(3) << "fail to load graph from " << config.model_file; return false; } auto inputs = graph_.get_ins(); for (auto &input_str : inputs) { graph_.ResetBatchSize(input_str, config.max_batch_size); max_batch_size_ = config.max_batch_size; } // optimization for graph if (!(graph_.Optimize())) { return false; } // construct executer if (executor_p_ == nullptr) { executor_p_ = new anakin::Net(graph_, true); } return true; } template bool PaddleInferenceAnakinPredictor::Run( const std::vector &inputs, std::vector *output_data, int batch_size) { for (const auto &input : inputs) { if (input.dtype != PaddleDType::FLOAT32) { VLOG(3) << "Only support float type inputs. " << input.name << "'s type is not float"; return false; } auto d_tensor_in_p = executor_p_->get_in(input.name); auto net_shape = d_tensor_in_p->shape(); if (net_shape.size() != input.shape.size()) { VLOG(3) << " input " << input.name << "'s shape size should be equal to that of net"; return false; } int sum = 1; for_each(input.shape.begin(), input.shape.end(), [&](int n) { sum *= n; }); if (sum > net_shape.count()) { graph_.Reshape(input.name, input.shape); delete executor_p_; executor_p_ = new anakin::Net(graph_, true); d_tensor_in_p = executor_p_->get_in(input.name); } anakin::saber::Shape tmp_shape; for (auto s : input.shape) { tmp_shape.push_back(s); } d_tensor_in_p->reshape(tmp_shape); if (input.lod.size() > 0) { if (input.lod.size() > 1) { VLOG(3) << " input lod first dim should <=1, but you set " << input.lod.size(); return false; } std::vector offset(input.lod[0].begin(), input.lod[0].end()); d_tensor_in_p->set_seq_offset(offset); VLOG(3) << "offset.size(): " << offset.size(); for (int i = 0; i < offset.size(); i++) { VLOG(3) << offset[i]; } } float *d_data_p = d_tensor_in_p->mutable_data(); #ifdef PADDLE_WITH_CUDA if (std::is_same::value) { if (cudaMemcpy(d_data_p, static_cast(input.data.data()), d_tensor_in_p->valid_size() * sizeof(float), cudaMemcpyHostToDevice) != 0) { VLOG(3) << "copy data from CPU to GPU error"; return false; } } #endif if (std::is_same::value) { memcpy(d_data_p, static_cast(input.data.data()), d_tensor_in_p->valid_size() * sizeof(float)); } } #ifdef PADDLE_WITH_CUDA cudaDeviceSynchronize(); executor_p_->prediction(); cudaDeviceSynchronize(); #endif if (output_data->empty()) { VLOG(3) << "At least one output should be set with tensors' names."; return false; } for (auto &output : *output_data) { auto *tensor = executor_p_->get_out(output.name); output.shape = tensor->valid_shape(); if (output.data.length() < tensor->valid_size() * sizeof(float)) { output.data.Resize(tensor->valid_size() * sizeof(float)); } #if PADDLE_WITH_CUDA if (std::is_same::value) { // Copy data from GPU -> CPU if (cudaMemcpy(output.data.data(), tensor->mutable_data(), tensor->valid_size() * sizeof(float), cudaMemcpyDeviceToHost) != 0) { VLOG(3) << "copy data from GPU to CPU error"; return false; } } #endif if (std::is_same::value) { memcpy(output.data.data(), tensor->mutable_data(), tensor->valid_size() * sizeof(float)); } } return true; } template anakin::Net &PaddleInferenceAnakinPredictor::get_executer() { return *executor_p_; } // the cloned new Predictor of anakin share the same net weights from original // Predictor template std::unique_ptr PaddleInferenceAnakinPredictor::Clone() { VLOG(3) << "Anakin Predictor::clone"; std::unique_ptr cls( new PaddleInferenceAnakinPredictor()); // construct executer from other graph auto anakin_predictor_p = dynamic_cast *>(cls.get()); if (!anakin_predictor_p) { VLOG(3) << "fail to call Init"; return nullptr; } anakin_predictor_p->get_executer().init(graph_); return std::move(cls); } #ifdef PADDLE_WITH_CUDA template class PaddleInferenceAnakinPredictor; #endif template class PaddleInferenceAnakinPredictor; // A factory to help create difference predictor. template <> std::unique_ptr CreatePaddlePredictor< AnakinConfig, PaddleEngineKind::kAnakin>(const AnakinConfig &config) { VLOG(3) << "Anakin Predictor create."; if (config.target_type == AnakinConfig::NVGPU) { #ifdef PADDLE_WITH_CUDA VLOG(3) << "Anakin Predictor create on [ NVIDIA GPU ]."; std::unique_ptr x( new PaddleInferenceAnakinPredictor(config)); return x; #else LOG(ERROR) << "AnakinConfig::NVGPU could not used in ONLY-CPU environment"; return nullptr; #endif } else if (config.target_type == AnakinConfig::X86) { VLOG(3) << "Anakin Predictor create on [ Intel X86 ]."; std::unique_ptr x( new PaddleInferenceAnakinPredictor(config)); return x; } else { VLOG(3) << "Anakin Predictor create on unknown platform."; return nullptr; } } #ifdef PADDLE_ANAKIN_ENABLE_OP_TIMER template using executor_t = anakin::Net; template void DisplayOpTimer(executor_t *net_executor, int epoch) { std::vector op_time = net_executor->get_op_time(); auto exec_funcs = net_executor->get_exec_funcs(); auto op_param = net_executor->get_op_param(); for (int i = 0; i < op_time.size(); i++) { LOG(INFO) << "name: " << exec_funcs[i].name << " op_type: " << exec_funcs[i].op_name << " op_param: " << op_param[i] << " time " << op_time[i] / epoch; } std::map op_map; for (int i = 0; i < op_time.size(); i++) { auto it = op_map.find(op_param[i]); if (it != op_map.end()) op_map[op_param[i]] += op_time[i]; else op_map.insert(std::pair(op_param[i], op_time[i])); } for (auto it = op_map.begin(); it != op_map.end(); ++it) { LOG(INFO) << it->first << " " << (it->second) / epoch << " ms"; } } #endif template PaddleInferenceAnakinPredictor::~PaddleInferenceAnakinPredictor() { #ifdef PADDLE_ANAKIN_ENABLE_OP_TIMER DisplayOpTimer(executor_p_, max_batch_size_); #endif delete executor_p_; executor_p_ = nullptr; } } // namespace paddle