# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import sys import time import signal import numbers import logging import itertools import threading import warnings import numpy as np from collections import namedtuple from paddle.fluid.framework import ( _set_expected_place, _current_expected_place, set_flags, ) import queue import paddle import paddle.profiler as profiler from paddle.profiler.utils import in_profiler_mode from .. import core, layers from ..framework import in_dygraph_mode from ..multiprocess_utils import ( _set_SIGCHLD_handler, MP_STATUS_CHECK_INTERVAL, CleanupFuncRegistrar, ) from .fetcher import _IterableDatasetFetcher, _MapDatasetFetcher from .batch_sampler import _InfiniteIterableSampler from .collate import default_collate_fn, default_convert_fn from .worker import ( ParentWatchDog, get_worker_info, _worker_loop, _DatasetKind, _IterableDatasetStopIteration, _WorkerException, _ResumeIteration, ) from .flat import _flatten_batch, _restore_batch from paddle.profiler.timer import benchmark __all__ = ['get_worker_info'] # NOTE: fix `terminate called without an active exception` # if for loop break and program exit immediately(with no model # layers processing) after iterate **the first few data** in # distributed lauch mode, distributed launch will call # terminate() to kill main process on each devices, but thread # is still iterating to fullfill blocking queue caches, which # may cause thread error `terminate called without an active # exception` for terminate is a strong singal and `__del__` # of DataLoader may not be called, so we add a global link to # the last DataLoader instance to call `__del__` to clean up # resources # NOTE: cannot simply as `__del__` to CleanupFuncRegistrar, # for this will remain a link to each DataLoader instance in # global, and will precludes GC to auto collect DataLoader # instance and will cause memory leak _loader = None def _clear_loader(): global _loader if _loader is not None: try: _loader.__del__() del _loader except: pass CleanupFuncRegistrar.register(_clear_loader) class _DataLoaderIterBase: """ Iterator implement of DataLoader, will load and feed mini-batch data by setting in given dataloader. Args: loader(instance of DataLoader): instance of `fluid.io.DataLoader` """ def __init__(self, loader): self._dataset = loader.dataset self._feed_list = loader.feed_list or [] self._places = loader.places self._return_list = loader.return_list self._batch_sampler = loader.batch_sampler self._drop_last = loader.drop_last self._auto_collate_batch = loader.auto_collate_batch self._num_workers = loader.num_workers self._use_buffer_reader = loader.use_buffer_reader self._prefetch_factor = loader.prefetch_factor self._use_shared_memory = loader.use_shared_memory self._timeout = ( loader.timeout if loader.timeout > 0 else MP_STATUS_CHECK_INTERVAL ) self._worker_init_fn = loader.worker_init_fn self._dataset_kind = loader.dataset_kind self._pin_memory = loader.pin_memory self._sampler_iter = iter(self._index_sampler) if self._auto_collate_batch: self._collate_fn = loader.collate_fn or default_collate_fn else: self._collate_fn = loader.collate_fn or default_convert_fn # LoDTensorBlockingQueue instance for create_py_reader and a thread # to put mini-batch data to self._blocking_queue, mini-batch data # will be get from: # 1. multi-process mode: get data from workers' result queue # 2. single-process mode: read mini-batch data in main process self._blocking_queue = None self._thread = None self._thread_done_event = threading.Event() @property def _index_sampler(self): if self._auto_collate_batch: return self._batch_sampler else: if self._dataset_kind == _DatasetKind.MAP: return list(range(len(self._dataset))) else: return _InfiniteIterableSampler(self._dataset, 1) def __iter__(self): return self def __len__(self): return len(self._batch_sampler) def _exit_thread_expectedly(self): self._thread_done_event.set() if self._blocking_queue: self._blocking_queue.close() def _exit_thread_unexpectedly(self): self._thread_done_event.set() if self._blocking_queue: self._blocking_queue.kill() class _DataLoaderIterSingleProcess(_DataLoaderIterBase): """ Single process implement of DataLoaderIter, loading data from loader.data in main process """ def __init__(self, loader): super().__init__(loader) self._dataset_fetcher = _DatasetKind.create_fetcher( self._dataset_kind, self._dataset, self._auto_collate_batch, self._collate_fn, self._drop_last, ) # NOTE: _structrue_infos used to record the data structure of # batch to restore batch structure after reading Tensor # from blocking_queue in single-process mode. Note that # only single process is used in single-process mode, we # can record the data structure sequencely in a list without # recording the send and recv index self._structure_infos = [] # NOTE: len(self._places) batch data compose as an output # iteration, set blocking_queue can cache "self._prefetch_factor" iteration datas # at most here self._blocking_queue_capacity = self._prefetch_factor * len( self._places ) self._init_thread() self._shutdown = False global _loader _loader = self def _init_thread(self): self._var_names = [v.name for v in self._feed_list] self._shapes = [v.shape for v in self._feed_list] self._dtypes = [v.dtype for v in self._feed_list] self._need_check_feed = [ v.desc.need_check_feed() for v in self._feed_list ] # if only 1 place, do not need to keep order self._blocking_queue = core.init_lod_tensor_blocking_queue( core.Variable(), self._blocking_queue_capacity, len(self._places) > 1, ) self._reader = core.create_py_reader( self._blocking_queue, self._var_names, self._shapes, self._dtypes, self._need_check_feed, self._places, self._use_buffer_reader, True, self._pin_memory, ) self._thread = threading.Thread( target=self._thread_loop, args=(_current_expected_place(),) ) self._thread.daemon = True self._thread.start() def _thread_loop(self, legacy_expected_place): # NOTE(zhiqiu): Set the expected place for new thread as the same as father thread, # and it will call platform::SetDeviceId() in c++ internally. # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0, # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda # APIs in this thread. core.set_current_thread_name("Dataloader_" + str(id(self))) _set_expected_place(legacy_expected_place) while not self._thread_done_event.is_set(): try: indices = next(self._sampler_iter) # read data from dataset in mini-batch # with paddle.fluid.dygraph.guard(place=paddle.CPUPlace()): # read data from dataset in mini-batch batch = self._dataset_fetcher.fetch( indices, self._thread_done_event ) except StopIteration: self._exit_thread_expectedly() return if batch is None or self._thread_done_event.is_set(): break # flat batch and record structure infos batch, structure = _flatten_batch(batch) self._structure_infos.append(structure) if self._thread_done_event.is_set(): break try: # pack as LoDTensorArray array = core.LoDTensorArray() for slot in batch: if isinstance(slot, (paddle.Tensor, core.eager.Tensor)): slot = slot.value().get_tensor() elif not isinstance(slot, core.LoDTensor): tmp = core.LoDTensor() tmp.set(slot, core.CPUPlace()) slot = tmp array.append(slot) if self._thread_done_event.is_set(): break try: self._blocking_queue.push(array) except: self._exit_thread_expectedly() except Exception as e: self._exit_thread_unexpectedly() raise e self._exit_thread_expectedly() def __next__(self): if in_profiler_mode(): trace_event = profiler.RecordEvent( name="_DataLoaderIterSingleProcess", event_type=profiler.TracerEventType.Dataloader, ) trace_event.begin() try: benchmark().check_if_need_record(self) benchmark().before_reader() if in_dygraph_mode(): data = core.eager.read_next_tensor_list( self._reader.read_next_list()[0] ) data = _restore_batch(data, self._structure_infos.pop(0)) else: # in static graph mode if self._return_list: data = self._reader.read_next_list() for i in range(len(data)): data[i] = data[i]._move_to_list() structs = [ self._structure_infos.pop(0) for _ in range(len(self._places)) ] data = [_restore_batch(d, s) for d, s in zip(data, structs)] # static graph organized data on multi-device with list, if # place number is 1, there is only 1 device, extra the data # from list for devices to be compatible with dygraph mode if len(self._places) == 1: data = data[0] else: data = self._reader.read_next() benchmark().after_reader() return data except StopIteration: self._reader.shutdown() self._try_shutdown_all() raise finally: if in_profiler_mode(): trace_event.end() def _shutdown_thread(self): if self._thread: self._thread_done_event.set() # NOTE: we wait for _thread exit for 3 seconds, if # thread not exit normally, force kill it for _ in range(3): if self._thread.is_alive(): time.sleep(1) else: break else: if self._thread is not threading.current_thread(): self._thread.join() self._thread = None def _try_shutdown_all(self): if not self._shutdown: try: # # _blocking_queue in keep order mode holds sub-threads # # need to release thread resources on unexpected exit if self._blocking_queue: self._blocking_queue.close() self._blocking_queue = None # NOTE: blocking queue should be closed firstly for # blocking queue read may hang and _thread_done_event # cannot be checked self._shutdown_thread() finally: self._shutdown = True def __del__(self): self._try_shutdown_all() class _DataLoaderIterMultiProcess(_DataLoaderIterBase): def __init__(self, loader): super().__init__(loader) self._persistent_workers = loader._persistent_workers self._resume_worker_cnt = 0 assert ( self._num_workers > 0 ), "Multi-process DataLoader " "invalid num_workers({})".format( self._num_workers ) # subprocess wrokers' result queue self._data_queue = None # data get from _data_queue will be reordered by _rcvd_idx # for data order keeping, data index not equal _rcvd_idx # will be cached in _task_infos self._send_idx = 0 self._rcvd_idx = 0 self._batches_outstanding = 0 self._task_infos = {} self._structure_infos = [] # indices outstand as _outstanding_capacity at first, and # blocking_queue capacity is also _outstanding_capacity. # _outstanding_capacity here to make sure each indices_queue # has at least "_prefetch_factor" indices, and outstanding batch cached # output data for at least "_prefetch_factor" iterations(Note that len(_places) # batches will be composed as an iteration output) self._outstanding_capacity = self._prefetch_factor * max( self._num_workers, len(self._places) ) # see _try_put_indices self._thread_lock = threading.Lock() self._base_seed = np.random.randint(low=0, high=sys.maxsize) # Note(zhangbo): shm_buffer_size is used for MemoryMapAllocationPool. # MemoryMapAllocationPool is used to cache and reuse shm, thus reducing munmap in dataloader. # For more details, please see: paddle/fluid/memory/allocation/mmap_allocator.h if os.environ.get('FLAGS_use_shm_cache', False) in [ 1, '1', True, 'True', 'true', ]: try: self._worker_shm_buffer_size = (2 + 1) * len(self._dataset[0]) except: self._worker_shm_buffer_size = 0 warnings.warn( "Setting the shm cache buffer size to 0, equivalent to not using the shm cache policy." ) else: self._worker_shm_buffer_size = 0 self._main_thread_shm_buffer_size = ( (self._worker_shm_buffer_size) * 2 * self._num_workers ) # init workers and indices queues and put 2 indices in each indices queue self._init_workers() for _ in range(self._outstanding_capacity): self._try_put_indices() self._init_thread() self._shutdown = False def _init_workers(self): import paddle.incubate.multiprocessing as multiprocessing # multiprocess worker and indice queue list initial as empty self._workers = [] self._worker_status = [] self._indices_queues = [] self._workers_idx_cycle = itertools.cycle(range(self._num_workers)) # create data_queue for workers self._data_queue = multiprocessing.Queue() # event for workers and thread, thread event is only need # in multi-processing mode self._workers_done_event = multiprocessing.Event() self._thread_done_event = threading.Event() for i in range(self._num_workers): indices_queue = multiprocessing.Queue() self._indices_queues.append(indices_queue) worker = multiprocessing.Process( target=_worker_loop, args=( self._dataset, self._dataset_kind, indices_queue, self._data_queue, self._workers_done_event, self._auto_collate_batch, self._collate_fn, self._drop_last, self._worker_init_fn, i, self._num_workers, self._use_shared_memory, self._base_seed, self._worker_shm_buffer_size, ), ) worker.daemon = True worker.start() self._workers.append(worker) self._worker_status.append(True) core._set_process_pids(id(self), tuple(w.pid for w in self._workers)) _set_SIGCHLD_handler() def _clear_and_remove_data_queue(self): if self._data_queue is not None: while True: try: self._data_queue.get_nowait() except: self._data_queue.cancel_join_thread() self._data_queue.close() break def _init_thread(self): self._var_names = [v.name for v in self._feed_list] self._shapes = [v.shape for v in self._feed_list] self._dtypes = [v.dtype for v in self._feed_list] self._need_check_feed = [ v.desc.need_check_feed() for v in self._feed_list ] # if only 1 place, do not need to keep order self._blocking_queue = core.init_lod_tensor_blocking_queue( core.Variable(), self._outstanding_capacity, len(self._places) > 1 ) core._set_max_memory_map_allocation_pool_size( self._main_thread_shm_buffer_size ) self._reader = core.create_py_reader( self._blocking_queue, self._var_names, self._shapes, self._dtypes, self._need_check_feed, self._places, self._use_buffer_reader, True, self._pin_memory, ) self._thread_done_event = threading.Event() # thread event is only need in multi-processing mode self._thread = threading.Thread( target=self._thread_loop, args=(_current_expected_place(),) ) self._thread.daemon = True self._thread.start() def _reset(self): # resume iteration in following steps # 1. Resume workers, clear worker caches # put _ResumeIteration to all worker as resume iteration flag with self._thread_lock: self._resume_worker_cnt = self._num_workers for worker_id in range(self._num_workers): self._indices_queues[worker_id].put(_ResumeIteration()) self._batches_outstanding += 1 # all flag will be check in _thread_loop, simply wait here while self._resume_worker_cnt > 0: time.sleep(0.5) # 2. clear blocking_queue caches # in order not to restart the thread, we just clear # the blocking_queue cachees instead of recreating one while self._blocking_queue.size() >= len(self._places): if in_dygraph_mode(): data = core.eager.read_next_tensor_list( self._reader.read_next_list()[0] ) else: if self._return_list: self._reader.read_next_list() else: data = self._reader.read_next() # 3. reset all states self._send_idx = 0 self._rcvd_idx = 0 self._batches_outstanding = 0 self._task_infos = {} self._structure_infos = [] # set all worker status available self._worker_status = [True] * self._num_workers # 4. reset _sampler_iter and put prefetch indices to start next epoch # init workers and indices queues and put 2 indices in each indices queue self._sampler_iter = iter(self._index_sampler) for _ in range(self._outstanding_capacity): self._try_put_indices() def _shutdown_worker(self, worker_id, shutdown=False): if self._worker_status[worker_id] or ( self._persistent_workers and shutdown ): self._indices_queues[worker_id].put(None) self._worker_status[worker_id] = False def _try_shutdown_all(self, timeout=None): if not self._shutdown: try: self._exit_thread_expectedly() self._clear_and_remove_data_queue() # set _workers_done_event should be set before put None # to indices_queue, workers wll exit on reading None from # indices_queue self._workers_done_event.set() for i in range(self._num_workers): self._shutdown_worker(i, shutdown=True) if not self._shutdown: for w in self._workers: w.join(timeout) for q in self._indices_queues: q.cancel_join_thread() q.close() finally: core._erase_process_pids(id(self)) self._shutdown = True def _thread_loop(self, legacy_expected_place): # NOTE(zhiqiu): Set the expected place for new thread as the same as father thread, # and it will call platform::SetDeviceId() in c++ internally. # If we do not set cudaDeviceId in new thread, the default cudaDeviceId will be 0, # Which may cost hundreds of MB of GPU memory on CUDAPlace(0) if calling some cuda # APIs in this thread. core.set_current_thread_name("Dataloader_" + str(id(self))) _set_expected_place(legacy_expected_place) while not self._thread_done_event.is_set(): batch = self._get_data() if not self._thread_done_event.is_set(): if batch is None: self._exit_thread_expectedly() else: if isinstance(batch, _ResumeIteration): assert self._resume_worker_cnt > 0 self._resume_worker_cnt -= 1 continue try: # pack as LoDTensorArray array = core.LoDTensorArray() if self._use_shared_memory: for tensor in batch: array.append(tensor) else: # LoDTensor not in shared memory is not # serializable, cannot be create in workers for slot in batch: if isinstance( slot, (paddle.Tensor, core.eager.Tensor) ): slot = slot.value().get_tensor() elif not isinstance(slot, core.LoDTensor): tmp = core.LoDTensor() tmp.set(slot, core.CPUPlace()) slot = tmp array.append(slot) if not self._blocking_queue.push(array): self._blocking_queue.close() except Exception as e: self._exit_thread_unexpectedly() raise e finally: self._rcvd_idx += 1 def _get_data(self): while not self._thread_done_event.is_set(): # For IterableDataset, batch indices is generated infinitely # for each worker to raise StopIteration, but a StopIteration # raising process will discard a batch indices which is count # in _send_idx but will not increase _rcvd_idx, so we check # whether the worker is still alive here to skip the discarded # batch indices and increase _rcvd_idx if self._dataset_kind == _DatasetKind.ITER: while self._rcvd_idx < self._send_idx: info = self._task_infos[self._rcvd_idx] if len(info) == 3 or self._worker_status[info[0]]: break del self._task_infos[self._rcvd_idx] self._rcvd_idx += 1 self._batches_outstanding -= 1 else: # NOTE: when _rcvd_idx catch up _send_idx, which means # one of following: # 1. all 2 * num_workers batches have been loaded # and stored in _blocking_queue # 2. all data drained # we need to let _thread blocking at _data_queue # get_data to inoccupy CPU, otherwise may occupy # CPU time for model running # NOTE: in persistent workers mode, do not check data # drained here, simply let it go to _data_queue # reading to get _ResumeIteration if not self._persistent_workers: # NOTE: _rcvd_idx and _send_idx only record batches among # workers, if batches among workers drained, there # may also be data in blocking queue if self._batches_outstanding < len(self._places): return None if ( self._rcvd_idx in self._task_infos and len(self._task_infos[self._rcvd_idx]) == 3 ): info = self._task_infos.pop(self._rcvd_idx) self._structure_infos.append(info[2]) return info[1] try: # [ avoid hang ]: main process may blocking at _reader.read_next when # KeyboardInterrupt, we do following tradeoff: # 1. get data with timeout, MP_STATUS_CHECK_INTERVAL(5s) as timeout # default, if KeyboardInterrupt blocking, failed workers will be # checked and raise RuntimeError to quit DataLoader in timeout # exception handling. # 2. if get data timeout and check workers all alive, continue to # get data again data = self._data_queue.get(timeout=self._timeout) except Exception as e: # check if thread done event set when waiting data if self._thread_done_event.is_set(): continue # check failed workers failed_workers = [] for i, w in enumerate(self._workers): if self._worker_status[i] and not w.is_alive(): failed_workers.append(w) self._shutdown_worker(i) if len(failed_workers) > 0: self._exit_thread_unexpectedly() pids = ', '.join(str(w.pid) for w in failed_workers) raise RuntimeError( "DataLoader {} workers exit unexpectedly, " "pids: {}".format(len(failed_workers), pids) ) # get(timeout) will call _poll(timeout) and may raise IOError if isinstance(e, queue.Empty) or isinstance(e, IOError): # continue on timeout to keep getting data from queue continue self._exit_thread_unexpectedly() logging.error( "DataLoader reader thread failed({}) to read data from " "workers' result queue.".format(e) ) raise e else: if self._dataset_kind == _DatasetKind.ITER and isinstance( data, _IterableDatasetStopIteration ): # if a worker get StopIteraion, we shutdown this worker, # note that this batch indices to trigger StopIteration # is discard, outstanding batch number should be decrease # and another indices should be put for other workers # may still working. if self._persistent_workers: self._worker_status[data.worker_id] = False else: self._shutdown_worker(data.worker_id) self._batches_outstanding -= 1 self._try_put_indices() continue idx, batch, structure = data if ( isinstance(idx, _ResumeIteration) and batch is None and structure is None ): return idx if isinstance(batch, _WorkerException): self._exit_thread_unexpectedly() batch.reraise() if idx == self._rcvd_idx: del self._task_infos[idx] self._structure_infos.append(structure) return batch else: self._task_infos[idx] += (batch, structure) continue def _try_put_indices(self): assert ( self._batches_outstanding <= self._outstanding_capacity ), "too many indices have been put to queue" # In multi-process mode for IterableDataset, _try_put_indices will # be called both in main process(for our implement has blocking queue, # and blocking queue read is in main process) and thread, which may # cause error following error # 1. "ValueError: generator already executing" in next(self._sampler_iter) # 2. re-enter in increase _send_idx # add a lock for threading save, for _try_put_indices is only a slight # function which is not in data reading pipeline, this lock almost no # influence on performance with self._thread_lock: try: indices = next(self._sampler_iter) except StopIteration: return for i in range(self._num_workers): worker_idx = next(self._workers_idx_cycle) if self._worker_status[worker_idx]: break else: return self._indices_queues[worker_idx].put((self._send_idx, indices)) self._task_infos[self._send_idx] = (worker_idx,) self._batches_outstanding += 1 self._send_idx += 1 def __del__(self): self._try_shutdown_all() def _shutdown_on_exit(self): self._try_shutdown_all(1) def __next__(self): if in_profiler_mode(): trace_event = profiler.RecordEvent( name="_DataLoaderIterMultiProcess", event_type=profiler.TracerEventType.Dataloader, ) trace_event.begin() try: benchmark().check_if_need_record(self) benchmark().before_reader() # _batches_outstanding here record the total batch data number # in 'from after _try_put_indices to beforeoutput data', this # value should be _outstanding_capacity if data is not drained, # if _batches_outstanding is less than _places number, there are # no enough data to generate next output, close blocking_queue and # set _thread_done_event here, py_reader will raise StopIteration, # end workers and indices_queues in StopIteration handling if self._batches_outstanding < len(self._places): if self._persistent_workers: raise StopIteration else: self._thread_done_event.set() self._blocking_queue.close() if in_dygraph_mode(): data = core.eager.read_next_tensor_list( self._reader.read_next_list()[0] ) data = _restore_batch(data, self._structure_infos.pop(0)) else: if self._return_list: data = self._reader.read_next_list() for i in range(len(data)): data[i] = data[i]._move_to_list() structs = [ self._structure_infos.pop(0) for _ in range(len(self._places)) ] data = [_restore_batch(d, s) for d, s in zip(data, structs)] # static graph organized data on multi-device with list, if # place number is 1, there is only 1 device, extra the data # from list for devices to be compatible with dygraph mode if len(self._places) == 1: data = data[0] else: data = self._reader.read_next() self._on_output_batch() benchmark().after_reader() return data except StopIteration: if not self._persistent_workers: self._reader.shutdown() self._try_shutdown_all() raise finally: if in_profiler_mode(): trace_event.end() def _on_output_batch(self): for _ in range(len(self._places)): self._batches_outstanding -= 1 self._try_put_indices()