/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #pragma once #include #include #include #include "paddle/fluid/operators/jit/helper.h" #include "paddle/fluid/operators/jit/kernel_base.h" #include "paddle/fluid/platform/enforce.h" namespace paddle { namespace operators { namespace jit { namespace refer { // Refer code only focus on correctness template void VMul(const T* x, const T* y, T* z, int n) { for (int i = 0; i < n; ++i) { z[i] = x[i] * y[i]; } } template void VAdd(const T* x, const T* y, T* z, int n) { for (int i = 0; i < n; ++i) { z[i] = x[i] + y[i]; } } template void VAddRelu(const T* x, const T* y, T* z, int n) { for (int i = 0; i < n; ++i) { z[i] = x[i] + y[i]; z[i] = z[i] > 0 ? z[i] : 0; } } template void VSub(const T* x, const T* y, T* z, int n) { for (int i = 0; i < n; ++i) { z[i] = x[i] - y[i]; } } template void VScal(const T* a, const T* x, T* y, int n) { for (int i = 0; i < n; ++i) { y[i] = a[0] * x[i]; } } template void VAddBias(const T* a, const T* x, T* y, int n) { for (int i = 0; i < n; ++i) { y[i] = a[0] + x[i]; } } template void VCopy(const T* x, T* y, int n) { std::memcpy(y, x, n * sizeof(T)); } // x shape: (x_len) // y shape: (h, x_len) template void VBroadcast(const T* x, T* y, int64_t y_h, int64_t x_len) { for (int64_t h = 0; h < y_h; ++h) { VCopy(x, y + h * x_len, x_len); } } template void VRelu(const T* x, T* y, int n) { for (int i = 0; i < n; ++i) { y[i] = x[i] > 0 ? x[i] : 0; } } template inline void VIdentity(const T* x, T* y, int n) { for (int i = 0; i < n; ++i) { y[i] = x[i]; } } template inline void VSquare(const T* x, T* y, int n) { for (int i = 0; i < n; ++i) { y[i] = x[i] * x[i]; } } template void VExp(const T* x, T* y, int n) { for (int i = 0; i < n; ++i) { y[i] = std::exp(x[i]); } } template void VSigmoid(const T* x, T* y, int n) { // y = 1 / (1 + e^-x) const T min = SIGMOID_THRESHOLD_MIN; const T max = SIGMOID_THRESHOLD_MAX; for (int i = 0; i < n; ++i) { T tmp = (x[i] < min) ? min : ((x[i] > max) ? max : x[i]); y[i] = static_cast(1) / (static_cast(1) + std::exp(-tmp)); } } template void VTanh(const T* x, T* y, int n) { // y = 2 * sigmoid(2x) - 1 for (int i = 0; i < n; ++i) { y[i] = static_cast(2) * x[i]; } VSigmoid(y, y, n); for (int i = 0; i < n; ++i) { y[i] = static_cast(2) * y[i] - static_cast(1); } } template void (*getActFunc(KernelType type))(const T*, T*, int) { // NOLINT if (type == kVSigmoid) { return VSigmoid; } else if (type == kVRelu) { return VRelu; } else if (type == kVTanh) { return VTanh; } else if (type == kVIdentity) { return VIdentity; } PADDLE_THROW("Not support type: %s", type); return nullptr; } // TODO(TJ): add refer gemm and make LSTM kernels combine as same GRU kernels // compute ct and ht template void LSTMCtHt(lstm_t* step, const lstm_attr_t* attr) { T* gates = reinterpret_cast(step->gates); const T* ct_1 = reinterpret_cast(step->ct_1); T* ct = reinterpret_cast(step->ct); T* ht = reinterpret_cast(step->ht); const T* wp = reinterpret_cast(step->wp); T* checked = reinterpret_cast(step->checked); auto act_gate = getActFunc(attr->act_gate); auto act_cand = getActFunc(attr->act_cand); auto act_cell = getActFunc(attr->act_cell); int d = attr->d; int d2 = d * 2; int d3 = d * 3; // gates: W_ch, W_ih, W_fh, W_oh if (attr->use_peephole) { VMul(wp, ct_1, checked, d); VMul(wp + d, ct_1, checked + d, d); VAdd(checked, gates + d, gates + d, d2); act_gate(gates + d, gates + d, d2); } else { act_gate(gates + d, gates + d, d3); } // C_t = C_t-1 * fgated + cand_gated * igated act_cand(gates, gates, d); VMul(gates, gates + d, gates + d, d); VMul(ct_1, gates + d2, gates + d2, d); VAdd(gates + d, gates + d2, ct, d); if (attr->use_peephole) { // get ogated VMul(wp + d2, ct, gates + d, d); VAdd(gates + d, gates + d3, gates + d3, d); act_gate(gates + d3, gates + d3, d); } // H_t = act_cell(C_t) * ogated act_cell(ct, gates + d2, d); VMul(gates + d2, gates + d3, ht, d); } // compute c1 and h1 without c0 or h0 template void LSTMC1H1(lstm_t* step, const lstm_attr_t* attr) { T* gates = reinterpret_cast(step->gates); T* ct = reinterpret_cast(step->ct); T* ht = reinterpret_cast(step->ht); auto act_gate = getActFunc(attr->act_gate); auto act_cand = getActFunc(attr->act_cand); auto act_cell = getActFunc(attr->act_cell); int d = attr->d; int d2 = d * 2; int d3 = d * 3; /* C_t = igated * cgated*/ act_gate(gates + d, gates + d, d); act_cand(gates, gates, d); VMul(gates, gates + d, ct, d); if (attr->use_peephole) { // get outgated, put W_oc * C_t on igated const T* wp = reinterpret_cast(step->wp); VMul(wp + d2, ct, gates + d, d); VAdd(gates + d, gates + d3, gates + d3, d); } /* H_t = act_cell(C_t) * ogated */ act_gate(gates + d3, gates + d3, d); act_cell(ct, gates + d2, d); VMul(gates + d2, gates + d3, ht, d); } // compute h1 without h0 template void GRUH1(gru_t* step, const gru_attr_t* attr) { T* gates = reinterpret_cast(step->gates); T* ht = reinterpret_cast(step->ht); auto act_gate = getActFunc(attr->act_gate); auto act_cand = getActFunc(attr->act_cand); int d = attr->d; int d2 = d * 2; act_gate(gates, gates, d); act_cand(gates + d2, gates + d2, d); VMul(gates, gates + d2, ht, d); } // compute the first part of GRU: ht = act_gate(r) * ht_1 template void GRUHtPart1(gru_t* step, const gru_attr_t* attr) { // W: {W_update, W_reset; W_state} T* gates = reinterpret_cast(step->gates); T* ht = reinterpret_cast(step->ht); const T* ht_1 = reinterpret_cast(step->ht_1); auto act_gate = getActFunc(attr->act_gate); act_gate(gates + attr->d, gates + attr->d, attr->d); VMul(ht_1, gates + attr->d, ht, attr->d); } // compute the second part of GRU: // ht = act_gate(u) * act_cand(s) + (1-act_gate(u)) * ht_1 template void GRUHtPart2(gru_t* step, const gru_attr_t* attr) { T* gates = reinterpret_cast(step->gates); T* ht = reinterpret_cast(step->ht); const T* ht_1 = reinterpret_cast(step->ht_1); auto act_gate = getActFunc(attr->act_gate); auto act_cand = getActFunc(attr->act_cand); int d = attr->d; T* y = gates + d * 2; act_gate(gates, gates, d); act_cand(y, y, d); // out = zt*ht~ + (1-zt)*ht_1 for (int i = 0; i < d; ++i) { ht[i] = gates[i] * y[i] + (static_cast(1) - gates[i]) * ht_1[i]; } } template void CRFDecoding(const int seq_len, const T* x, const T* w, T* alpha, int* track, int right) { constexpr int state_trans_base_idx = 2; for (int i = 0; i < right; ++i) { alpha[i] = w[i] + x[i]; } for (int k = 1; k < seq_len; ++k) { for (int i = 0; i < right; ++i) { T max_score = -std::numeric_limits::max(); int max_j = 0; for (int j = 0; j < right; ++j) { T score = alpha[(k - 1) * right + j] + w[(j + state_trans_base_idx) * right + i]; if (score > max_score) { max_score = score; max_j = j; } } alpha[k * right + i] = max_score + x[k * right + i]; track[k * right + i] = max_j; } } } template void LayerNorm(T* x, T* out, T* mean, T* var, const T* scale, const T* bias, int height, const float epsilon, int right) { // get mean for (int i = 0; i < height; i++) { T sum = 0.0; int offset = i * right; for (int j = 0; j < right; j++) { sum += x[offset + j]; } mean[i] = sum / right; } // get variance for (int i = 0; i < height; i++) { T sum = 0.0; int offset = i * right; for (int j = 0; j < right; j++) { sum += (x[offset + j] - mean[i]) * (x[offset + j] - mean[i]); } var[i] = sum / right; } for (int i = 0; i < height; i++) { int offset = i * right; T sqrt_var = std::sqrt(var[i] + (T)epsilon); for (int j = 0; j < right; j++) { out[offset + j] = (x[offset + j] - mean[i]) / sqrt_var; } } if (scale) { for (int i = 0; i < height; i++) { int offset = i * right; for (int j = 0; j < right; j++) { out[offset + j] *= scale[j]; } } } if (bias) { for (int i = 0; i < height; i++) { int offset = i * right; for (int j = 0; j < right; j++) { out[offset + j] += bias[j]; } } } } template void NCHW16CMulNC(const T* x, const T* y, T* z, int height, int width) { int offset = 0; for (int h = 0; h < height; ++h) { for (int w = 0; w < width; ++w) { for (int i = 0; i < 16; ++i) { z[i + offset] = y[i] * x[i + offset]; } offset += ZMM_FLOAT_BLOCK; } } } template void SeqPool(const T* x, T* y, const seq_pool_attr_t* attr) { for (int w = 0; w < attr->w; ++w) { const T* src = x + w; T* dst = y + w; *dst = static_cast(0); for (int h = 0; h < attr->h; ++h) { *dst = *dst + *src; src += attr->w; } } if (attr->type == SeqPoolType::kAvg || attr->type == SeqPoolType::kSqrt) { T scalar = static_cast(1); if (attr->type == SeqPoolType::kAvg) { scalar = scalar / static_cast(attr->h); } else { scalar = scalar / std::sqrt(static_cast(attr->h)); } VScal(&scalar, y, y, attr->w); } } // A(M,K) * B(K,N) = C(M,N) template void MatMul(const T* A, const T* B, T* C, const matmul_attr_t* attr) { int M = attr->m; int N = attr->n; int K = attr->k; for (int m = 0; m < M; ++m) { const T* pa = A + m * K; T* pc = C + m * N; for (int n = 0; n < N; ++n) { const T* pb = B + n; pc[n] = pa[0] * pb[0]; for (int k = 1; k < K; ++k) { pc[n] += pa[k] * pb[k * N]; } } } } template void HMax(const T* x, T* res, int n) { res[0] = x[0]; for (int i = 1; i < n; ++i) { res[0] = res[0] < x[i] ? x[i] : res[0]; } } template void HSum(const T* x, T* res, int n) { res[0] = x[0]; for (int i = 1; i < n; ++i) { res[0] += x[i]; } } template void StrideASum(const T* x, T* res, int n, int stride) { res[0] = x[0]; for (int i = stride; i < n; i += stride) { res[0] += std::abs(x[i]); } } template void StrideScal(const T* a, const T* x, T* y, int n, int stride) { for (int i = 0; i < n; ++i) { if (i % stride == 0) { y[i] = x[i] * a[0]; } else { y[i] = x[i]; } } } // y = e^(x - max(x)) // y = y / sum(y) // remain is the product of dimension shapes after the axis dimension template void Softmax(const T* x, T* y, int n, int bs = 1, int remain = 1) { for (int i = 0; i < bs; ++i) { T scalar; HMax(x, &scalar, n); scalar = static_cast(0) - scalar; VAddBias(&scalar, x, y, n); // x - max VExp(y, y, n); if (remain == 1) { HSum(y, &scalar, n); scalar = static_cast(1) / scalar; VScal(&scalar, y, y, n); } else { for (int j = 0; j < remain; j++) { StrideASum(&y[j], &scalar, n, remain); scalar = static_cast(1) / scalar; StrideScal(&scalar, &y[j], &y[j], n, remain); } } x += n; y += n; } } // embedding seq pool // table is a matrix with (tbl_h, tbl_w) // idx is a matrix with (idx_h, idx_w) // output is a vector with length tbl_w * idx_w template void EmbSeqPool(const T* table, const int64_t* idx, T* out, const emb_seq_pool_attr_t* attr) { PADDLE_ENFORCE_EQ(attr->table_width * attr->index_width, attr->out_width); auto check_idx_value_valid = [&](int64_t i) { PADDLE_ENFORCE_LT(idx[i], attr->table_height, "idx value: %d, i: %d", idx[i], i); PADDLE_ENFORCE_GE(idx[i], 0, "idx value: %d, i: %d", idx[i], i); }; for (int64_t w = 0; w != attr->index_width; ++w) { check_idx_value_valid(w); std::memcpy(out + w * attr->table_width, table + idx[w] * attr->table_width, attr->table_width * sizeof(T)); } for (int64_t h = 1; h < attr->index_height; ++h) { for (int64_t w = 0; w < attr->index_width; ++w) { int64_t i = h * attr->index_width + w; check_idx_value_valid(i); VAdd(table + idx[i] * attr->table_width, out + w * attr->table_width, out + w * attr->table_width, attr->table_width); } } } // SGD algorithm: // lr is pointor of learning rate scalar // param is an input matrix with (param_h, param_w) // grad is an input matrix with (grad_h, grad_w), here grad_w == param_w // selected_rows is a vectot with size selected_rows_size( <= grad_h ) // out is an output matrix with (param_h, param_w) // // support both regular and sparse grad // regular SGD: out[:] = param[:] - lr[0] * grad[:]; // sparse SGD: out[rows[i]][:] = param[rows[i]][:] - lr[0] * grad[i][:] // // Note: when use sparse SGD, and if out != param, // the out rows which are not selected have not beed changed, which maybe empty template void Sgd(const T* lr, const T* param, const T* grad, const int64_t* rows, T* out, const sgd_attr_t* attr) { PADDLE_ENFORCE_EQ(attr->param_width, attr->grad_width); PADDLE_ENFORCE_LE(attr->selected_rows_size, attr->grad_height); for (int64_t i = 0; i < attr->selected_rows_size; ++i) { auto h_idx = rows[i]; PADDLE_ENFORCE_LT(h_idx, attr->param_height); PADDLE_ENFORCE_GE(h_idx, 0); for (int64_t j = 0; j < attr->grad_width; ++j) { out[h_idx * attr->grad_width + j] = param[h_idx * attr->grad_width + j] - lr[0] * grad[i * attr->grad_width + j]; } } } #define DECLARE_REFER_KERNEL(name) \ template \ class name##Kernel : public ReferKernel> { \ public: \ name##Kernel() { this->func = name; } \ } // const T* x, const T* y, T* z, int n DECLARE_REFER_KERNEL(VMul); DECLARE_REFER_KERNEL(VAdd); DECLARE_REFER_KERNEL(VAddRelu); DECLARE_REFER_KERNEL(VSub); // const T* a, const T* x, T* y, int n DECLARE_REFER_KERNEL(VScal); DECLARE_REFER_KERNEL(VAddBias); // const T* a, const T* x, T* y, int n, int stride DECLARE_REFER_KERNEL(StrideScal); // const T* x, T* y, int n DECLARE_REFER_KERNEL(VRelu); DECLARE_REFER_KERNEL(VIdentity); DECLARE_REFER_KERNEL(VExp); DECLARE_REFER_KERNEL(VSigmoid); DECLARE_REFER_KERNEL(VTanh); DECLARE_REFER_KERNEL(VSquare); DECLARE_REFER_KERNEL(VCopy); // lstm_t*, const lstm_attr_t* DECLARE_REFER_KERNEL(LSTMCtHt); DECLARE_REFER_KERNEL(LSTMC1H1); // gru_t*, const gru_attr_t* DECLARE_REFER_KERNEL(GRUH1); DECLARE_REFER_KERNEL(GRUHtPart1); DECLARE_REFER_KERNEL(GRUHtPart2); DECLARE_REFER_KERNEL(HMax); DECLARE_REFER_KERNEL(HSum); DECLARE_REFER_KERNEL(StrideASum); // others DECLARE_REFER_KERNEL(CRFDecoding); DECLARE_REFER_KERNEL(LayerNorm); DECLARE_REFER_KERNEL(NCHW16CMulNC); DECLARE_REFER_KERNEL(SeqPool); DECLARE_REFER_KERNEL(MatMul); DECLARE_REFER_KERNEL(Softmax); DECLARE_REFER_KERNEL(EmbSeqPool); DECLARE_REFER_KERNEL(Sgd); DECLARE_REFER_KERNEL(VBroadcast); #undef DECLARE_REFER_KERNEL } // namespace refer } // namespace jit } // namespace operators } // namespace paddle