/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/detail/safe_ref.h" #include "paddle/fluid/operators/gather.h" #include "paddle/fluid/operators/math/math_function.h" namespace paddle { namespace operators { const int kBoxDim = 4; template static inline T BBoxArea(const T* box, bool normalized) { if (box[2] < box[0] || box[3] < box[1]) { // If coordinate values are is invalid // (e.g. xmax < xmin or ymax < ymin), return 0. return static_cast(0.); } else { const T w = box[2] - box[0]; const T h = box[3] - box[1]; if (normalized) { return w * h; } else { // If coordinate values are not within range [0, 1]. return (w + 1) * (h + 1); } } } template class DistributeFpnProposalsOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* fpn_rois = context.Input("FpnRois"); auto multi_fpn_rois = context.MultiOutput("MultiFpnRois"); auto* restore_index = context.Output("RestoreIndex"); const int min_level = context.Attr("min_level"); const int max_level = context.Attr("max_level"); const int refer_level = context.Attr("refer_level"); const int refer_scale = context.Attr("refer_scale"); const int num_level = max_level - min_level + 1; // check that the fpn_rois is not empty PADDLE_ENFORCE_EQ(fpn_rois->lod().size(), 1UL, "DistributeFpnProposalsOp need 1 level of LoD"); auto fpn_rois_lod = fpn_rois->lod().back(); int fpn_rois_num = fpn_rois_lod[fpn_rois_lod.size() - 1]; std::vector target_level; // std::vector target_level(fpn_rois_num, -1); // record the number of rois in each level std::vector num_rois_level(num_level, 0); std::vector num_rois_level_integral(num_level + 1, 0); for (int i = 0; i < fpn_rois_lod.size() - 1; ++i) { Tensor fpn_rois_slice = fpn_rois->Slice(fpn_rois_lod[i], fpn_rois_lod[i + 1]); const T* rois_data = fpn_rois_slice.data(); for (int j = 0; j < fpn_rois_slice.dims()[0]; ++j) { // get the target level of current rois T roi_scale = std::sqrt(BBoxArea(rois_data, false)); int tgt_lvl = std::floor(std::log2(roi_scale / refer_scale) + refer_level); tgt_lvl = std::min(max_level, std::max(tgt_lvl, min_level)); target_level.push_back(tgt_lvl); num_rois_level[tgt_lvl - min_level]++; rois_data += kBoxDim; } } // define the output rois // pointer which point to each level fpn rois T* multi_fpn_rois_data[num_level]; // lod0 which will record the offset information of each level rois std::vector> multi_fpn_rois_lod0; for (int i = 0; i < num_level; ++i) { // allocate memory for each level rois multi_fpn_rois[i]->mutable_data({num_rois_level[i], kBoxDim}, context.GetPlace()); multi_fpn_rois_data[i] = multi_fpn_rois[i]->data(); std::vector lod0(1, 0); multi_fpn_rois_lod0.push_back(lod0); // statistic start point for each level rois num_rois_level_integral[i + 1] = num_rois_level_integral[i] + num_rois_level[i]; } restore_index->mutable_data({1, fpn_rois_num}, context.GetPlace()); int* restore_index_data = restore_index->data(); std::vector restore_index_inter(fpn_rois_num, -1); // distribute the rois into different fpn level by target level for (int i = 0; i < fpn_rois_lod.size() - 1; ++i) { Tensor fpn_rois_slice = fpn_rois->Slice(fpn_rois_lod[i], fpn_rois_lod[i + 1]); const T* rois_data = fpn_rois_slice.data(); size_t cur_offset = fpn_rois_lod[i]; // std::vector lod_offset[num_level]; for (int j = 0; j < num_level; j++) { multi_fpn_rois_lod0[j].push_back(multi_fpn_rois_lod0[j][i]); } for (int j = 0; j < fpn_rois_slice.dims()[0]; ++j) { int lvl = target_level[cur_offset + j]; memcpy(multi_fpn_rois_data[lvl - min_level], rois_data, kBoxDim * sizeof(T)); multi_fpn_rois_data[lvl - min_level] += kBoxDim; int index_in_shuffle = num_rois_level_integral[lvl - min_level] + multi_fpn_rois_lod0[lvl - min_level][i + 1]; restore_index_inter[index_in_shuffle] = cur_offset + j; multi_fpn_rois_lod0[lvl - min_level][i + 1]++; rois_data += kBoxDim; } } for (int i = 0; i < fpn_rois_num; ++i) { restore_index_data[restore_index_inter[i]] = i; } // merge lod information into LoDTensor for (int i = 0; i < num_level; ++i) { framework::LoD lod; lod.emplace_back(multi_fpn_rois_lod0[i]); multi_fpn_rois[i]->set_lod(lod); } } }; } // namespace operators } // namespace paddle