# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle paddle.set_default_dtype("float64") from paddle.fluid.layers import sequence_mask import numpy as np import unittest from convert import convert_params_for_net from rnn_numpy import SimpleRNN, LSTM, GRU class TestSimpleRNN(unittest.TestCase): def __init__(self, time_major=True, direction="forward", place="cpu"): super(TestSimpleRNN, self).__init__("runTest") self.time_major = time_major self.direction = direction self.num_directions = 2 if direction == "bidirectional" else 1 self.place = place def setUp(self): # Since `set_device` is global, set `set_device` in `setUp` rather than # `__init__` to avoid using an error device set by another test case. place = paddle.set_device(self.place) paddle.disable_static(place) rnn1 = SimpleRNN( 16, 32, 2, time_major=self.time_major, direction=self.direction) rnn2 = paddle.nn.SimpleRNN( 16, 32, 2, time_major=self.time_major, direction=self.direction) convert_params_for_net(rnn1, rnn2) self.rnn1 = rnn1 self.rnn2 = rnn2 def test_with_initial_state(self): rnn1 = self.rnn1 rnn2 = self.rnn2 x = np.random.randn(12, 4, 16) if not self.time_major: x = np.transpose(x, [1, 0, 2]) prev_h = np.random.randn(2 * self.num_directions, 4, 32) y1, h1 = rnn1(x, prev_h) y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h)) np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) def test_with_zero_state(self): rnn1 = self.rnn1 rnn2 = self.rnn2 x = np.random.randn(12, 4, 16) if not self.time_major: x = np.transpose(x, [1, 0, 2]) y1, h1 = rnn1(x) y2, h2 = rnn2(paddle.to_tensor(x)) np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) def test_with_input_lengths(self): rnn1 = self.rnn1 rnn2 = self.rnn2 x = np.random.randn(12, 4, 16) if not self.time_major: x = np.transpose(x, [1, 0, 2]) sequence_length = np.array([12, 10, 9, 8], dtype=np.int64) y1, h1 = rnn1(x, sequence_length=sequence_length) seq_len = paddle.to_tensor(sequence_length) mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype()) if self.time_major: mask = paddle.transpose(mask, [1, 0]) y2, h2 = rnn2(paddle.to_tensor(x), sequence_length=seq_len) y2 = paddle.multiply(y2, mask, axis=0) np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) def runTest(self): self.test_with_initial_state() self.test_with_zero_state() self.test_with_input_lengths() class TestGRU(unittest.TestCase): def __init__(self, time_major=True, direction="forward", place="cpu"): super(TestGRU, self).__init__("runTest") self.time_major = time_major self.direction = direction self.num_directions = 2 if direction == "bidirectional" else 1 self.place = place def setUp(self): # Since `set_device` is global, set `set_device` in `setUp` rather than # `__init__` to avoid using an error device set by another test case. place = paddle.set_device(self.place) paddle.disable_static(place) rnn1 = GRU(16, 32, 2, time_major=self.time_major, direction=self.direction) rnn2 = paddle.nn.GRU(16, 32, 2, time_major=self.time_major, direction=self.direction) convert_params_for_net(rnn1, rnn2) self.rnn1 = rnn1 self.rnn2 = rnn2 def test_with_initial_state(self): rnn1 = self.rnn1 rnn2 = self.rnn2 x = np.random.randn(12, 4, 16) if not self.time_major: x = np.transpose(x, [1, 0, 2]) prev_h = np.random.randn(2 * self.num_directions, 4, 32) y1, h1 = rnn1(x, prev_h) y2, h2 = rnn2(paddle.to_tensor(x), paddle.to_tensor(prev_h)) np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) def test_with_zero_state(self): rnn1 = self.rnn1 rnn2 = self.rnn2 x = np.random.randn(12, 4, 16) if not self.time_major: x = np.transpose(x, [1, 0, 2]) y1, h1 = rnn1(x) y2, h2 = rnn2(paddle.to_tensor(x)) np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) def test_with_input_lengths(self): rnn1 = self.rnn1 rnn2 = self.rnn2 x = np.random.randn(12, 4, 16) if not self.time_major: x = np.transpose(x, [1, 0, 2]) sequence_length = np.array([12, 10, 9, 8], dtype=np.int64) y1, h1 = rnn1(x, sequence_length=sequence_length) seq_len = paddle.to_tensor(sequence_length) mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype()) if self.time_major: mask = paddle.transpose(mask, [1, 0]) y2, h2 = rnn2(paddle.to_tensor(x), sequence_length=seq_len) y2 = paddle.multiply(y2, mask, axis=0) np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) def runTest(self): self.test_with_initial_state() self.test_with_zero_state() self.test_with_input_lengths() class TestLSTM(unittest.TestCase): def __init__(self, time_major=True, direction="forward", place="cpu"): super(TestLSTM, self).__init__("runTest") self.time_major = time_major self.direction = direction self.num_directions = 2 if direction == "bidirectional" else 1 self.place = place def setUp(self): # Since `set_device` is global, set `set_device` in `setUp` rather than # `__init__` to avoid using an error device set by another test case. place = paddle.set_device(self.place) paddle.disable_static(place) rnn1 = LSTM( 16, 32, 2, time_major=self.time_major, direction=self.direction) rnn2 = paddle.nn.LSTM( 16, 32, 2, time_major=self.time_major, direction=self.direction) convert_params_for_net(rnn1, rnn2) self.rnn1 = rnn1 self.rnn2 = rnn2 def test_with_initial_state(self): rnn1 = self.rnn1 rnn2 = self.rnn2 x = np.random.randn(12, 4, 16) if not self.time_major: x = np.transpose(x, [1, 0, 2]) prev_h = np.random.randn(2 * self.num_directions, 4, 32) prev_c = np.random.randn(2 * self.num_directions, 4, 32) y1, (h1, c1) = rnn1(x, (prev_h, prev_c)) y2, (h2, c2) = rnn2( paddle.to_tensor(x), (paddle.to_tensor(prev_h), paddle.to_tensor(prev_c))) np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5) def test_with_zero_state(self): rnn1 = self.rnn1 rnn2 = self.rnn2 x = np.random.randn(12, 4, 16) if not self.time_major: x = np.transpose(x, [1, 0, 2]) y1, (h1, c1) = rnn1(x) y2, (h2, c2) = rnn2(paddle.to_tensor(x)) np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5) def test_with_input_lengths(self): rnn1 = self.rnn1 rnn2 = self.rnn2 x = np.random.randn(12, 4, 16) if not self.time_major: x = np.transpose(x, [1, 0, 2]) sequence_length = np.array([12, 10, 9, 8], dtype=np.int64) y1, (h1, c1) = rnn1(x, sequence_length=sequence_length) seq_len = paddle.to_tensor(sequence_length) mask = sequence_mask(seq_len, dtype=paddle.get_default_dtype()) if self.time_major: mask = paddle.transpose(mask, [1, 0]) y2, (h2, c2) = rnn2(paddle.to_tensor(x), sequence_length=seq_len) y2 = paddle.multiply(y2, mask, axis=0) np.testing.assert_allclose(y1, y2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(h1, h2.numpy(), atol=1e-8, rtol=1e-5) np.testing.assert_allclose(c1, c2.numpy(), atol=1e-8, rtol=1e-5) def test_predict(self): place = paddle.set_device(self.place) paddle.seed(123) np.random.seed(123) class Net(paddle.nn.Layer): def __init__(self): super(Net, self).__init__() self.rnn1 = paddle.nn.LSTM( 16, 32, 2, direction="bidirectional", dropout=0.1) def forward(self, input): return self.rnn1(input) x = paddle.randn((4, 10, 16)) x.stop_gradient = False seq_len = paddle.to_tensor(np.array([10, 6, 8, 5])) mask = sequence_mask(seq_len, maxlen=10, dtype=x.dtype) mask = paddle.unsqueeze(mask, [2]) rnn = Net() y, (h, c) = rnn(x) y = y * mask loss = paddle.mean(y) loss.backward() optimizer = paddle.optimizer.Adam( learning_rate=0.1, parameters=rnn.parameters()) optimizer.step() rnn.eval() y, (h, c) = rnn(x) # `jit.to_static` would include a train_program, eval mode might cause # some errors currently, such as dropout grad op gets `is_test == True`. rnn.train() rnn = paddle.jit.to_static( rnn, [paddle.static.InputSpec( shape=[None, None, 16], dtype=x.dtype)]) paddle.jit.save(rnn, "./inference/lstm_infer") paddle.enable_static() new_scope = paddle.static.Scope() with paddle.static.scope_guard(new_scope): exe = paddle.static.Executor(place) [inference_program, feed_target_names, fetch_targets] = paddle.static.load_inference_model( dirname="./inference", executor=exe, model_filename="lstm_infer.pdmodel", params_filename="lstm_infer.pdiparams") results = exe.run(inference_program, feed={feed_target_names[0]: x.numpy()}, fetch_list=fetch_targets) np.testing.assert_equal( y.numpy(), results[0]) # eval results equal predict results paddle.disable_static() def runTest(self): self.test_with_initial_state() self.test_with_zero_state() self.test_with_input_lengths() self.test_predict() def load_tests(loader, tests, pattern): suite = unittest.TestSuite() devices = ["cpu", "gpu"] if paddle.fluid.is_compiled_with_cuda() \ else ["cpu"] for direction in ["forward", "backward", "bidirectional"]: for time_major in [True, False]: for device in devices: for test_class in [TestSimpleRNN, TestLSTM, TestGRU]: suite.addTest(test_class(time_major, direction, device)) return suite