# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import copy import paddle.fluid as fluid from paddle.distributed.auto_parallel.dist_context import DistributedContext from paddle.distributed.auto_parallel.operators.common import ( get_distributed_operator_impl_container, ) from paddle.fluid import core from paddle.fluid.framework import Parameter, Program from .dist_attribute import OperatorDistributedAttribute from .operators.common import BACKWARD_ONLY_DIST_OPS from .utils import ( __no_shape_var_type__, is_backward_op, is_forward_op, is_loss_op, is_optimize_op, ) __varname_not_in_block__ = ["lod_tensor_blocking_queue"] class Partitioner: """ warning:: Partitioner is experimental and subject to change. Partitioner convert a program into another program. Given a serial program which has been auto completed with shard annotation, the Partitioner convert the serial program into a "distributed" program. The Partitioner will modify the serial program in following two ways, which is also the major difference between serial and distributed program: 1. partition op: replace a serial op into its corresponding dist op infered from the shard annotation 2. partition var: if a var is sharded, modify the shape of var according to its shard annotation Partitioner is supposed to be call by the auto parallel framework, and not supposed to be directly called by user. """ def __init__(self, dist_context, rank_id=0): """ Args: dist_context (paddle.fluid.DistributedContext): used to access the distributed_attr of var & op, every Partitioner object could maintain its own DistributedContext member, and partition program base on that shard scenario. rank_id (int): global rank id to which the partitioned distributed program belong. """ if not isinstance(dist_context, DistributedContext): raise TypeError( "dist_context be paddle.fluid.DistributedContext, got %s here" % type(dist_context) ) self._dist_context = dist_context self._rank_id = rank_id self._serial2dist_varname_mapping = {} self._dist_varname_suffix = "" def partition( self, serial_main_program, serial_startup_program, params_grads ): if not isinstance(serial_main_program, (Program)): raise TypeError( "main_program be paddle.fluid.framework.program, got %s here" % type(serial_main_program) ) # check if shard annotated serial program valid if not self._is_valid_annotated_program(serial_main_program): raise RuntimeError( "Not all vars or ops are annotated in main program !" ) # init distop helper dist_op_context = self._dist_context.dist_op_context dist_op_context.varname_mapping = self._serial2dist_varname_mapping dist_op_context.rank_id = self._rank_id # partition startup program if serial_startup_program is None: partitioned_startup_prog = None else: partitioned_startup_prog = self.partition_startup_program( serial_main_program, serial_startup_program ) dist_op_context.dst_startup_program = partitioned_startup_prog # partition main program ( partitioned_main_prog, partitioned_params_grads, ) = self.partition_main_program(serial_main_program, params_grads) return ( partitioned_main_prog, partitioned_startup_prog, partitioned_params_grads, ) def partition_startup_program( self, serial_main_program, serial_startup_program ): if not isinstance(serial_startup_program, (Program)): raise TypeError( "dist_context be paddle.fluid.framework.program, got %s here" % type(serial_startup_program) ) partitioned_startup_prog = fluid.Program() ref_block = serial_main_program.global_block() target_block = partitioned_startup_prog.global_block() var2shape = {} temp_varname_map = {} # tensors for var in serial_startup_program.list_vars(): assert var.persistable new_name = var.name + self._dist_varname_suffix temp_varname_map[var.name] = new_name target_shape = _partition_var( self._dist_context, ref_block, target_block, var.name, new_name ) var2shape[new_name] = target_shape # ops for op in serial_startup_program.global_block().ops: # TODO if var not belong to this rank, should be filtered output_vars = op.desc.output_arg_names() assert ( len(output_vars) == 1 ), "initializer should output only ONE variable, but got [{}]".format( str(op.desc) ) assert ( temp_varname_map[output_vars[0]] in var2shape ), "try to initialize [{}] which is not a persistable var".format( output_vars[0] ) new_op_desc = target_block.desc.append_op() new_op_desc.copy_from(op.desc) new_op_desc._rename_output( output_vars[0], temp_varname_map[output_vars[0]] ) new_op_desc._set_attr( "shape", var2shape[temp_varname_map[output_vars[0]]] ) target_block._sync_with_cpp() # set distribute atrribute new_op = target_block.ops[-1] assert new_op.type == new_op_desc.type() assert new_op.desc == new_op_desc output_var = target_block.var(output_vars[0]) output_var_attr = ( self._dist_context.get_tensor_dist_attr_for_program(output_var) ) op_attr = OperatorDistributedAttribute() op_attr.process_mesh = output_var_attr.process_mesh op_attr.set_output_dims_mapping( output_var.name, output_var_attr.dims_mapping ) op_attr.set_input_dims_mapping( output_var.name, output_var_attr.dims_mapping ) self._dist_context.set_op_dist_attr_for_program(new_op, op_attr) return partitioned_startup_prog def partition_main_program(self, serial_main_program, params_and_grads): """ 1. partition variables 2. replace local op with corresponding dist op """ partitioned_main_prog = fluid.Program() dist_op_context = self._dist_context.dist_op_context dist_op_context.dst_main_program = partitioned_main_prog for idx in range(self._dist_context.block_state.nblock): ref_block = serial_main_program.blocks[idx] if idx == 0: target_block = partitioned_main_prog.blocks[0] else: target_block = partitioned_main_prog._create_block( parent_idx=ref_block.parent_idx ) assert ref_block.idx == target_block.idx target_block._set_forward_block_idx(ref_block.forward_block_idx) dist_op_context.work_block = target_block self.partition_block(ref_block, target_block) partitioned_main_prog.current_block_idx = 0 # should reconnect the block_attr ptr to the correct block for block_id in range(self._dist_context.block_state.nblock): block = partitioned_main_prog.block(block_id) for op in block.ops: for attr_name in op.all_attrs(): if op.attr_type(attr_name) == core.AttrType.BLOCK: relative_id = op._block_attr_id(attr_name) op._set_attr( attr_name, partitioned_main_prog.block(relative_id) ) partitioned_params_and_grads = [] for p, g in params_and_grads: assert p.name in self._serial2dist_varname_mapping dist_p = self._get_dist_var_by_serial_var(p, partitioned_main_prog) if g is None: dist_g = None else: assert g.name in self._serial2dist_varname_mapping dist_g = self._get_dist_var_by_serial_var( g, partitioned_main_prog ) partitioned_params_and_grads.append((dist_p, dist_g)) return partitioned_main_prog, partitioned_params_and_grads def partition_block(self, ref_block, target_block): dist_op_context = self._dist_context.dist_op_context serial_ops = ref_block.ops last_fwd_op_idx = -1 for idx, op in enumerate(ref_block.ops): if is_loss_op(op): last_fwd_op_idx = idx break if last_fwd_op_idx == -1: last_fwd_op_idx = len(ref_block.ops) # init mapping forward_op_id2forward_op = {} for idx in range(len(serial_ops)): if idx <= last_fwd_op_idx: forward_op_id2forward_op[ serial_ops[idx].desc.original_id() ] = serial_ops[idx] # partiiton appended_grad_times = 0 for idx, op in enumerate(serial_ops): op_dist_attr = self._dist_context.get_op_dist_attr_for_program(op) if is_backward_op(op) and ( is_forward_op(serial_ops[idx - 1]) or is_loss_op(serial_ops[idx - 1]) ): if not op_dist_attr.is_recompute: appended_grad_times += 1 # partititon input variables for serial_input_varname in op.desc.input_arg_names(): if ( serial_input_varname not in self._serial2dist_varname_mapping ): new_varname = ( serial_input_varname + self._dist_varname_suffix ) if ref_block.has_var(serial_input_varname): _partition_var( self._dist_context, ref_block, target_block, serial_input_varname, new_varname, ) else: for varname_not_in_block in __varname_not_in_block__: assert ( varname_not_in_block in serial_input_varname ), "{} is not found".format(serial_input_varname) self._serial2dist_varname_mapping[ serial_input_varname ] = new_varname # partition output vars for serial_output_varname in op.desc.output_arg_names(): if ( serial_output_varname not in self._serial2dist_varname_mapping ): new_varname = ( serial_output_varname + self._dist_varname_suffix ) _partition_var( self._dist_context, ref_block, target_block, serial_output_varname, new_varname, ) self._serial2dist_varname_mapping[ serial_output_varname ] = new_varname # partition op if is_forward_op(op) or op_dist_attr.is_recompute: kinputs, koutputs = dist_op_context.prepare_context(op) dist_op_forward_impl = _get_dist_op_forward_implement( op, self._dist_context ) dist_op_forward_impl.forward( self._dist_context, **kinputs, **koutputs ) elif is_backward_op(op): kinputs, koutputs = dist_op_context.prepare_context(op) dist_op_backward_impl = _get_dist_op_backward_implement( op, self._dist_context, forward_op_id2forward_op ) grad_var_to_var = ( self._dist_context.dist_op_context.grad_var_to_var[ appended_grad_times ] ) dist_op_backward_impl.backward( self._dist_context, **kinputs, **koutputs, **{"grad_var_to_var": grad_var_to_var} ) elif is_optimize_op(op): # NOTE: BACKWARD_ONLY_DIST_OPS's op_role must 2 because of 1F1B PASS kinputs, koutputs = dist_op_context.prepare_context(op) dist_op_opt_impl = _get_dist_op_backward_implement( op, self._dist_context, forward_op_id2forward_op ) dist_op_opt_impl.backward( self._dist_context, **kinputs, **koutputs, **{"grad_var_to_var": {}} ) else: raise NotImplementedError( "partitioner only support forward and backward, optimize ops, but got {}".format( str(op) ) ) def _is_valid_annotated_program(self, program): # TODO (ZJ-LIANG) should check all block ops = program.global_block().ops vars_ = program.list_vars() op_dist_attrs = [ self._dist_context.get_op_dist_attr_for_program(op) for op in ops ] var_dist_attrs = [ self._dist_context.get_tensor_dist_attr_for_program(var) for var in vars_ if (var.type not in __no_shape_var_type__) ] all_ops_annotated = all( dist_attr is not None for dist_attr in op_dist_attrs ) all_vars_annotated = all( dist_attr is not None for dist_attr in var_dist_attrs ) return all_ops_annotated and all_vars_annotated def _get_dist_var_by_serial_var(self, serial_var, partitioned_main_prog): block_idx = serial_var.block.idx target_block = partitioned_main_prog.blocks[block_idx] dist_var_name = self._serial2dist_varname_mapping[serial_var.name] assert target_block.has_var(dist_var_name) return target_block.var(dist_var_name) def _get_dist_shape(var, dist_attr): var_shape = var.shape mapping = dist_attr.dims_mapping mesh = dist_attr.process_mesh.shape if mapping == []: return var_shape assert len(var_shape) == len( mapping ), "variable shape [{}] and dim_mapping [{}] is NOT match !".format( var_shape, mapping ) new_shape = [] for idx in range(len(var_shape)): if var_shape[idx] == -1 or mapping[idx] == -1: new_shape.append(var_shape[idx]) else: assert ( var_shape[idx] % mesh[mapping[idx]] == 0 ), "un-event partition: var_shape[idx]=[{}], mesh[{}]".format( var_shape[idx], mesh[mapping[idx]] ) new_shape.append(var_shape[idx] // mesh[mapping[idx]]) return new_shape def _partition_parameter( dist_context, src_var, dst_block, dst_varname, dst_shape ): # NOTE hack to copied Parameter # not initialized parameter, need to initialize it copied_kwargs = {} copied_kwargs['trainable'] = src_var.trainable copied_kwargs['optimize_attr'] = src_var.optimize_attr copied_kwargs['regularizer'] = src_var.regularizer copied_kwargs['do_model_average'] = src_var.do_model_average copied_kwargs['need_clip'] = src_var.need_clip param = Parameter( block=dst_block, type=src_var.type, name=dst_varname, shape=dst_shape, dtype=src_var.dtype, lod_level=src_var.lod_level, error_clip=src_var.error_clip, stop_gradient=src_var.stop_gradient, is_data=src_var.is_data, belong_to_optimizer=src_var.belong_to_optimizer, **copied_kwargs ) return param def _partition_intermediate_var( dist_context, src_var, dst_block, dst_varname, dst_shape ): var = dst_block.create_var( type=src_var.type, name=dst_varname, shape=dst_shape, dtype=src_var.dtype, lod_level=src_var.lod_level, persistable=src_var.persistable, error_clip=src_var.error_clip, stop_gradient=src_var.stop_gradient, is_data=src_var.is_data, belong_to_optimizer=src_var.belong_to_optimizer, ) return var def _partition_var( dist_context, src_block, dst_block, src_varname, dst_varname ): """ partition include: split + replicate """ src_var = src_block.var(src_varname) if src_var.type in __no_shape_var_type__: persist = getattr(src_var, 'persistable', False) new_var = dst_block.create_var( type=src_var.type, name=dst_varname, persistable=persist, stop_gradient=True, ) target_shape = None else: dist_attr = dist_context.get_tensor_dist_attr_for_program(src_var) target_shape = _get_dist_shape(src_var, dist_attr) if isinstance(src_var, Parameter): new_var = _partition_parameter( dist_context, src_var, dst_block, dst_varname, target_shape ) else: new_var = _partition_intermediate_var( dist_context, src_var, dst_block, dst_varname, target_shape ) dist_attr = copy.deepcopy( dist_context.get_tensor_dist_attr_for_program(src_var) ) assert dist_attr is not None dist_context.set_tensor_dist_attr_for_program(new_var, dist_attr) return target_shape def _get_dist_op_backward_implement( backward_op, dist_context, forward_op_id2forward_op ): dist_op_context = dist_context.dist_op_context if backward_op.desc.original_id() in dist_op_context.grad_op_id_to_op_id: forward_op_id = dist_op_context.grad_op_id_to_op_id[ backward_op.desc.original_id() ] forward_op = forward_op_id2forward_op[forward_op_id] forward_op_dist_attr = dist_context.get_op_dist_attr_for_program( forward_op ) dist_op_impl_container = get_distributed_operator_impl_container( forward_op_dist_attr.impl_type ) dist_op_impl = dist_op_impl_container.get_impl( forward_op_dist_attr.impl_idx ) return dist_op_impl # # NOTE trick for dist ops that only have backward implement if backward_op.type in BACKWARD_ONLY_DIST_OPS: op_dist_attr = dist_context.get_op_dist_attr_for_program(backward_op) assert op_dist_attr.impl_idx >= 0 dist_op_impl = get_distributed_operator_impl_container( op_dist_attr.impl_type ).get_impl(op_dist_attr.impl_idx) return dist_op_impl dist_op = get_distributed_operator_impl_container("default") return dist_op.get_impl(0) def _get_dist_op_forward_implement(forward_op, dist_context): dist_attr = dist_context.get_op_dist_attr_for_program(forward_op) dist_op_impl_container = get_distributed_operator_impl_container( dist_attr.impl_type ) dist_op_impl = dist_op_impl_container.get_impl(dist_attr.impl_idx) return dist_op_impl