/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the Licnse. */ #include #include #include "paddle/fluid/framework/ddim.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/operators/npu_op_runner.h" #include "paddle/fluid/operators/slice_op.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; void UpdateAttr(const framework::DDim in_dims, const std::vector axes, const std::vector starts, const std::vector ends, std::vector* offsets, std::vector* size) { int cnt = 0; for (int i = 0; i < in_dims.size(); ++i) { int start = 0; int end = in_dims[i]; int axis = axes[cnt]; if (axis == i) { start = starts[cnt]; if (start < 0) { start = (start + in_dims[i]); } start = std::max(start, static_cast(0)); end = ends[cnt]; if (end < 0) { end = (end + in_dims[i]); } end = std::min(end, static_cast(in_dims[i])); cnt++; } (*offsets)[i] = start; (*size)[i] = end - start; } } template class SliceNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("Input"); auto* out = ctx.Output("Out"); auto axes = ctx.Attr>("axes"); auto starts = ctx.Attr>("starts"); auto ends = ctx.Attr>("ends"); out->mutable_data(ctx.GetPlace()); auto in_dims = input->dims(); std::vector offsets(in_dims.size()); std::vector size(in_dims.size()); UpdateAttr(in_dims, axes, starts, ends, &offsets, &size); auto runner = NpuOpRunner("SliceD", {*input}, {*out}, {{"offsets", offsets}, {"size", size}}); auto stream = ctx.template device_context() .stream(); runner.Run(stream); } }; template class SliceGradNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("Input"); auto* dout = ctx.Input(framework::GradVarName("Out")); auto* dinput = ctx.Output(framework::GradVarName("Input")); auto axes = ctx.Attr>("axes"); auto starts = ctx.Attr>("starts"); auto ends = ctx.Attr>("ends"); auto in_dims = input->dims(); int rank = in_dims.size(); std::vector offsets(rank); std::vector size(rank); UpdateAttr(in_dims, axes, starts, ends, &offsets, &size); std::vector> paddings(rank, std::vector(2)); for (int i = 0; i < rank; ++i) { paddings[i][0] = static_cast(offsets[i]); paddings[i][1] = static_cast(in_dims[i] - size[i] - offsets[i]); } dinput->mutable_data(ctx.GetPlace()); auto stream = ctx.template device_context() .stream(); auto runner = NpuOpRunner("PadD", {*dout}, {*dinput}, {{"paddings", paddings}}); runner.Run(stream); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_NPU_KERNEL( slice, ops::SliceNPUKernel, ops::SliceNPUKernel, ops::SliceNPUKernel); REGISTER_OP_NPU_KERNEL( slice_grad, ops::SliceGradNPUKernel, ops::SliceGradNPUKernel, ops::SliceGradNPUKernel);