# edit-mode: -*- python -*- # Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.trainer_config_helpers import * ######################## data source ################################ define_py_data_sources2( train_list='gserver/tests/Sequence/dummy.list', test_list=None, module='rnn_data_provider', obj='process_mixed') settings(batch_size=2, learning_rate=0.01) ######################## network configure ################################ dict_dim = 10 word_dim = 2 hidden_dim = 2 label_dim = 2 data1 = data_layer(name="word1", size=dict_dim) data2 = data_layer(name="word2", size=dict_dim) label = data_layer(name="label", size=label_dim) encoding = embedding_layer(input=data2, size=word_dim) # This hierarchical RNN is designed to be equivalent to the simple RNN in # sequence_rnn_multi_unequalength_inputs.conf def outer_step(subseq, seq, nonseq, encoding): outer_mem = memory(name="outer_rnn_state", size=hidden_dim) def inner_step(data1, data2, label): inner_mem = memory( name="inner_rnn_state", size=hidden_dim, boot_layer=outer_mem) subseq = embedding_layer(input=data1, size=word_dim) seq = embedding_layer(input=data2, size=word_dim) nonseq = embedding_layer(input=label, size=word_dim) print_layer(input=[data1, seq, label, inner_mem]) out = fc_layer( input=[subseq, seq, nonseq, inner_mem], size=hidden_dim, act=TanhActivation(), bias_attr=True, name='inner_rnn_state') return out decoder = recurrent_group( step=inner_step, name='inner', input=[subseq, StaticInput(seq), nonseq]) last = last_seq(name="outer_rnn_state", input=decoder) context = simple_attention( encoded_sequence=encoding, encoded_proj=encoding, decoder_state=last) return context out = recurrent_group( name="outer", step=outer_step, input=[data1, data2, StaticInput(label), StaticInput(encoding)]) rep = last_seq(input=out) prob = fc_layer( size=label_dim, input=rep, act=SoftmaxActivation(), bias_attr=True) outputs(classification_cost(input=prob, label=label))