# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os from test_dist_base import TestDistRunnerBase, runtime_main import paddle import paddle.fluid as fluid IS_SPARSE = True EMBED_SIZE = 32 HIDDEN_SIZE = 256 N = 5 # Fix seed for test fluid.default_startup_program().random_seed = 1 fluid.default_main_program().random_seed = 1 class TestDistWord2vec2x2(TestDistRunnerBase): def get_model(self, batch_size=2): BATCH_SIZE = batch_size def __network__(words): embed_first = fluid.layers.embedding( input=words[0], size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr=fluid.ParamAttr( name='shared_w', initializer=fluid.initializer.Constant(value=0.1), ), ) embed_second = fluid.layers.embedding( input=words[1], size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr=fluid.ParamAttr( name='shared_w', initializer=fluid.initializer.Constant(value=0.1), ), ) embed_third = fluid.layers.embedding( input=words[2], size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr=fluid.ParamAttr( name='shared_w', initializer=fluid.initializer.Constant(value=0.1), ), ) embed_forth = fluid.layers.embedding( input=words[3], size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr=fluid.ParamAttr( name='shared_w', initializer=fluid.initializer.Constant(value=0.1), ), ) concat_embed = fluid.layers.concat( input=[embed_first, embed_second, embed_third, embed_forth], axis=1, ) hidden1 = fluid.layers.fc( input=concat_embed, size=HIDDEN_SIZE, act='sigmoid', param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1) ), ) predict_word = fluid.layers.fc( input=hidden1, size=dict_size, act='softmax', param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.1) ), ) cost = paddle.nn.functional.cross_entropy( input=predict_word, label=words[4], reduction='none', use_softmax=False, ) avg_cost = paddle.mean(cost) return avg_cost, predict_word word_dict = paddle.dataset.imikolov.build_dict() dict_size = len(word_dict) first_word = fluid.layers.data(name='firstw', shape=[1], dtype='int64') second_word = fluid.layers.data( name='secondw', shape=[1], dtype='int64' ) third_word = fluid.layers.data(name='thirdw', shape=[1], dtype='int64') forth_word = fluid.layers.data(name='forthw', shape=[1], dtype='int64') next_word = fluid.layers.data(name='nextw', shape=[1], dtype='int64') avg_cost, predict_word = __network__( [first_word, second_word, third_word, forth_word, next_word] ) inference_program = paddle.fluid.default_main_program().clone() sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) sgd_optimizer.minimize(avg_cost) train_reader = paddle.batch( paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE ) test_reader = paddle.batch( paddle.dataset.imikolov.test(word_dict, N), BATCH_SIZE ) return ( inference_program, avg_cost, train_reader, test_reader, None, predict_word, ) if __name__ == "__main__": os.environ['CPU_NUM'] = '1' os.environ['USE_CUDA'] = "FALSE" runtime_main(TestDistWord2vec2x2)