# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import six import numpy as np import paddle.fluid.core as core import paddle.fluid.executor as executor import paddle.fluid.layers as layers import paddle.fluid.optimizer as optimizer from paddle.fluid.compiler import CompiledProgram from paddle.fluid.framework import Program, program_guard from paddle.fluid.io import save_inference_model, load_inference_model from paddle.fluid.transpiler import memory_optimize class TestBook(unittest.TestCase): def test_fit_line_inference_model(self): MODEL_DIR = "./tmp/inference_model" init_program = Program() program = Program() with program_guard(program, init_program): x = layers.data(name='x', shape=[2], dtype='float32') y = layers.data(name='y', shape=[1], dtype='float32') y_predict = layers.fc(input=x, size=1, act=None) cost = layers.square_error_cost(input=y_predict, label=y) avg_cost = layers.mean(cost) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) sgd_optimizer.minimize(avg_cost, init_program) place = core.CPUPlace() exe = executor.Executor(place) exe.run(init_program, feed={}, fetch_list=[]) for i in six.moves.xrange(100): tensor_x = np.array( [[1, 1], [1, 2], [3, 4], [5, 2]]).astype("float32") tensor_y = np.array([[-2], [-3], [-7], [-7]]).astype("float32") exe.run(program, feed={'x': tensor_x, 'y': tensor_y}, fetch_list=[avg_cost]) save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program) expected = exe.run(program, feed={'x': tensor_x, 'y': tensor_y}, fetch_list=[avg_cost])[0] six.moves.reload_module(executor) # reload to build a new scope exe = executor.Executor(place) [infer_prog, feed_var_names, fetch_vars] = load_inference_model( MODEL_DIR, exe) outs = exe.run( infer_prog, feed={feed_var_names[0]: tensor_x, feed_var_names[1]: tensor_y}, fetch_list=fetch_vars) actual = outs[0] self.assertEqual(feed_var_names, ["x", "y"]) self.assertEqual(len(fetch_vars), 1) print("fetch %s" % str(fetch_vars[0])) self.assertTrue("scale" in str(fetch_vars[0])) self.assertEqual(expected, actual) class TestSaveInferenceModel(unittest.TestCase): def test_save_inference_model(self): MODEL_DIR = "./tmp/inference_model2" init_program = Program() program = Program() # fake program without feed/fetch with program_guard(program, init_program): x = layers.data(name='x', shape=[2], dtype='float32') y = layers.data(name='y', shape=[1], dtype='float32') y_predict = layers.fc(input=x, size=1, act=None) cost = layers.square_error_cost(input=y_predict, label=y) avg_cost = layers.mean(cost) place = core.CPUPlace() exe = executor.Executor(place) exe.run(init_program, feed={}, fetch_list=[]) memory_optimize(program, print_log=True) self.assertEqual(program._is_mem_optimized, True) # will print warning message save_inference_model(MODEL_DIR, ["x", "y"], [avg_cost], exe, program) class TestInstance(unittest.TestCase): def test_save_inference_model(self): MODEL_DIR = "./tmp/inference_model3" init_program = Program() program = Program() # fake program without feed/fetch with program_guard(program, init_program): x = layers.data(name='x', shape=[2], dtype='float32') y = layers.data(name='y', shape=[1], dtype='float32') y_predict = layers.fc(input=x, size=1, act=None) cost = layers.square_error_cost(input=y_predict, label=y) avg_cost = layers.mean(cost) place = core.CPUPlace() exe = executor.Executor(place) exe.run(init_program, feed={}, fetch_list=[]) # will print warning message cp_prog = CompiledProgram(program).with_data_parallel( loss_name=avg_cost.name) self.assertRaises(TypeError, save_inference_model, [MODEL_DIR, ["x", "y"], [avg_cost], exe, cp_prog]) self.assertRaises(TypeError, save_inference_model, [MODEL_DIR, ["x", "y"], [avg_cost], [], cp_prog]) if __name__ == '__main__': unittest.main()