// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #define GOOGLE_GLOG_DLL_DECL #include #include //#include #include #include #include #include // NOLINT #include "paddle/fluid/inference/api/paddle_inference_api.h" #define ASSERT_TRUE(x) x #define ASSERT_EQ(x, y) assert(x == y) // DEFINE_string(dirname, "./LB_icnet_model", // "Directory of the inference model."); namespace paddle { NativeConfig GetConfig() { NativeConfig config; config.prog_file = "./hs_lb_without_bn_cuda/__model__"; config.param_file = "./hs_lb_without_bn_cuda/__params__"; config.fraction_of_gpu_memory = 0.5; config.use_gpu = true; config.device = 0; return config; } using Time = decltype(std::chrono::high_resolution_clock::now()); Time time() { return std::chrono::high_resolution_clock::now(); }; double time_diff(Time t1, Time t2) { typedef std::chrono::microseconds ms; auto diff = t2 - t1; ms counter = std::chrono::duration_cast(diff); return counter.count() / 1000.0; } void test_naive(int batch_size, std::string model_path) { NativeConfig config = GetConfig(); int height = 449; int width = 581; std::vector data; for(int i=0; i < 3 * height * width; ++i) { data.push_back(0.0); } // read data // std::ifstream infile("new_file.list"); // std::string temp_s; // std::vector all_files; // while (!infile.eof()) { // infile >> temp_s; // all_files.push_back(temp_s); // } // // size_t file_num = all_files.size(); // infile.close(); // // =============read file list ============= // for (size_t f_k = 0; f_k < 1; f_k++) { // std::ifstream in_img(all_files[f_k]); // std::cout << all_files[f_k] << std::endl; // float temp_v; // float sum_n = 0.0; // std::vector data; // while (!in_img.eof()) { // in_img >> temp_v; // data.push_back(float(temp_v)); // sum_n += temp_v; // } // in_img.close(); // std::cout << "sum: " << sum_n << std::endl; PaddleTensor tensor; tensor.shape = std::vector({batch_size, 3, height, width}); tensor.data.Resize(sizeof(float) * batch_size * 3 * height * width); std::copy(data.begin(), data.end(), static_cast(tensor.data.data())); tensor.dtype = PaddleDType::FLOAT32; std::vector paddle_tensor_feeds(1, tensor); constexpr int num_jobs = 2; // each job run 1 batch std::vector threads; for (int tid = 0; tid < num_jobs; ++tid) { threads.emplace_back([&, tid]() { PaddleTensor tensor_out; std::vector outputs(1, tensor_out); auto predictor = CreatePaddlePredictor(config); for (size_t i = 0; i < 1000; i++) { ASSERT_TRUE(predictor->Run(paddle_tensor_feeds, &outputs)); VLOG(0) << "tid : " << tid << " run: " << i << "finished"; //std::cout <<"tid : " << tid << " run: " << i << "finished" << std::endl; ASSERT_EQ(outputs.size(), 1UL); // int64_t* data_o = static_cast(outputs[0].data.data()); // int64_t sum_out = 0; // for (size_t j = 0; j < outputs[0].data.length() / sizeof(int64_t); // ++j) { // sum_out += data_o[j]; // } // std::cout << "tid : " << tid << "pass : " << i << " " << sum_out // << std::endl; } }); } for (int i = 0; i < num_jobs; ++i) { threads[i].join(); } } // } } // namespace paddle int main(int argc, char** argv) { paddle::test_naive(1 << 0, ""); return 0; }