# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import sys from op_test import OpTest exit(0) def to_abs_lod(lod): if len(lod) == 0 or len(lod) == 1: return lod import copy new_lod = copy.deepcopy(lod) for idx, val in enumerate(lod[0]): new_lod[0][idx] = lod[1][val] return new_lod def seq_concat(inputs, level): lod0 = inputs['X'][0][1][1] lod1 = inputs['X'][1][1][1] x0 = inputs['X'][0][1][0] x1 = inputs['X'][1][1][0] level_idx = len(lod0) - level - 1 outs = [] for i in range(len(lod0[level_idx]) - 1): sub_x0 = x0[to_abs_lod(lod0)[level_idx][i]:to_abs_lod(lod0)[level_idx][ i + 1], :] sub_x1 = x1[to_abs_lod(lod1)[level_idx][i]:to_abs_lod(lod1)[level_idx][ i + 1], :] outs.append(np.concatenate((sub_x0, sub_x1), axis=0)) return np.concatenate(outs, axis=0) class TestSeqConcatOp(OpTest): def set_data(self): # two level, batch size is 3 x0 = np.random.random((4, 6, 3)).astype('float32') lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]] x1 = np.random.random((4, 8, 3)).astype('float32') lod1 = [[0, 2, 4], [0, 1, 2, 3, 4]] axis = 1 level = 1 self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]} self.attrs = {'axis': axis, 'level': level} self.outputs = {'Out': (np.concatenate([x0, x1], axis=1), lod0)} def setUp(self): self.op_type = "sequence_concat" self.set_data() def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['x0'], 'Out') class TestSeqConcatOpLevelZeroNestedSequence(TestSeqConcatOp): def set_data(self): # two level, batch size is 3 x0 = np.random.random((4, 6, 3)).astype('float32') lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]] x1 = np.random.random((7, 6, 3)).astype('float32') lod1 = [[0, 2, 4], [0, 1, 3, 5, 7]] axis = 0 level = 0 self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]} self.attrs = {'axis': axis, 'level': level} out_lod = [[0, 2, 4], [0, 2, 5, 8, 11]] self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)} class TestSeqConcatOplevelOneNestedSequence(TestSeqConcatOp): def set_data(self): # two level, batch size is 3 x0 = np.random.random((4, 6, 3)).astype('float32') lod0 = [[0, 2, 4], [0, 1, 2, 3, 4]] x1 = np.random.random((7, 6, 3)).astype('float32') lod1 = [[0, 3, 4], [0, 1, 3, 5, 7]] axis = 0 level = 1 self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]} self.attrs = {'axis': axis, 'level': level} out_lod = [[0, 5, 8], [0, 1, 2, 3, 5, 7, 8, 9, 11]] self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)} class TestSeqConcatOpLevelZeroSequence(TestSeqConcatOp): def set_data(self): # two level, batch size is 3 x0 = np.random.random((4, 3, 4)).astype('float32') lod0 = [[0, 1, 2, 3, 4]] x1 = np.random.random((7, 3, 4)).astype('float32') lod1 = [[0, 1, 3, 5, 7]] axis = 0 level = 0 self.inputs = {'X': [('x0', (x0, lod0)), ('x1', (x1, lod1))]} self.attrs = {'axis': axis, 'level': level} out_lod = [[0, 2, 5, 8, 11]] self.outputs = {'Out': (seq_concat(self.inputs, level), out_lod)} if __name__ == '__main__': unittest.main()