// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/framework/eigen.h" #include namespace paddle { namespace framework { TEST(EigenDim, From) { EigenDim<3>::Type ed = EigenDim<3>::From(make_ddim({1, 2, 3})); ASSERT_EQ(1, ed[0]); ASSERT_EQ(2, ed[1]); ASSERT_EQ(3, ed[2]); } TEST(Eigen, Tensor) { Tensor t; float* p = t.mutable_data(make_ddim({1, 2, 3}), platform::CPUPlace()); for (int i = 0; i < 1 * 2 * 3; i++) { p[i] = static_cast(i); } EigenTensor::Type et = EigenTensor::From(t); ASSERT_EQ(1, et.dimension(0)); ASSERT_EQ(2, et.dimension(1)); ASSERT_EQ(3, et.dimension(2)); for (int i = 0; i < 1; i++) { for (int j = 0; j < 2; j++) { for (int k = 0; k < 3; k++) { ASSERT_NEAR((i * 2 + j) * 3 + k, et(i, j, k), 1e-6f); } } } } TEST(Eigen, ScalarFrom) { Tensor t; int* p = t.mutable_data(make_ddim({1}), platform::CPUPlace()); *p = static_cast(100); EigenScalar::Type es = EigenScalar::From(t); ASSERT_EQ(0, es.dimension(0)); ASSERT_EQ(100, es(0)); } TEST(Eigen, VectorFrom) { Tensor t; float* p = t.mutable_data(make_ddim({6}), platform::CPUPlace()); for (int i = 0; i < 6; i++) { p[i] = static_cast(i); } EigenVector::Type ev = EigenVector::From(t); ASSERT_EQ(6, ev.dimension(0)); for (int i = 0; i < 6; i++) { ASSERT_NEAR(i, ev(i), 1e-6f); } } TEST(Eigen, VectorFlatten) { Tensor t; float* p = t.mutable_data(make_ddim({1, 2, 3}), platform::CPUPlace()); for (int i = 0; i < 1 * 2 * 3; i++) { p[i] = static_cast(i); } EigenVector::Type ev = EigenVector::Flatten(t); ASSERT_EQ(1 * 2 * 3, ev.dimension(0)); for (int i = 0; i < 1 * 2 * 3; i++) { ASSERT_NEAR(i, ev(i), 1e-6f); } } TEST(Eigen, Matrix) { Tensor t; float* p = t.mutable_data(make_ddim({2, 3}), platform::CPUPlace()); for (int i = 0; i < 2 * 3; i++) { p[i] = static_cast(i); } EigenMatrix::Type em = EigenMatrix::From(t); ASSERT_EQ(2, em.dimension(0)); ASSERT_EQ(3, em.dimension(1)); for (int i = 0; i < 2; i++) { for (int j = 0; j < 3; j++) { ASSERT_NEAR(i * 3 + j, em(i, j), 1e-6f); } } } TEST(Eigen, MatrixReshape) { Tensor t; float* p = t.mutable_data({2, 3, 6, 4}, platform::CPUPlace()); for (int i = 0; i < 2 * 3 * 6 * 4; ++i) { p[i] = static_cast(i); } EigenMatrix::Type em = EigenMatrix::Reshape(t, 2); ASSERT_EQ(2 * 3, em.dimension(0)); ASSERT_EQ(6 * 4, em.dimension(1)); for (int i = 0; i < 2 * 3; i++) { for (int j = 0; j < 6 * 4; j++) { ASSERT_NEAR(i * 6 * 4 + j, em(i, j), 1e-6f); } } } } // namespace framework } // namespace paddle