# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle.v2 as paddle import numpy as np # init paddle paddle.init(use_gpu=False) # network config x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(2)) y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear()) y = paddle.layer.data(name='y', type=paddle.data_type.dense_vector(1)) cost = paddle.layer.square_error_cost(input=y_predict, label=y) # create parameters parameters = paddle.parameters.create(cost) # create optimizer optimizer = paddle.optimizer.Momentum(momentum=0) # create trainer trainer = paddle.trainer.SGD(cost=cost, parameters=parameters, update_equation=optimizer) # event_handler to print training info def event_handler(event): if isinstance(event, paddle.event.EndIteration): if event.batch_id % 1 == 0: print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id, event.cost) # product model every 10 pass if isinstance(event, paddle.event.EndPass): if event.pass_id % 10 == 0: with open('params_pass_%d.tar' % event.pass_id, 'w') as f: trainer.save_parameter_to_tar(f) # define training dataset reader def train_reader(): train_x = np.array([[1, 1], [1, 2], [3, 4], [5, 2]]) train_y = np.array([[-2], [-3], [-7], [-7]]) def reader(): for i in xrange(train_y.shape[0]): yield train_x[i], train_y[i] return reader # define feeding map feeding = {'x': 0, 'y': 1} # training trainer.train( reader=paddle.batch( train_reader(), batch_size=1), feeding=feeding, event_handler=event_handler, num_passes=100)