# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import paddle.fluid.framework as framework import paddle.fluid.optimizer as optimizer import paddle.compat as cpt from paddle.fluid.backward import append_backward class TestOptimizer(unittest.TestCase): def test_sgd_optimizer(self): def check_sgd_optimizer(optimizer_attr): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr=optimizer_attr) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01) opts, _ = sgd_optimizer.minimize(mean_out, init_program) return opts opts = check_sgd_optimizer({'learning_rate': 1.1}) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "sgd"]) opts = check_sgd_optimizer({'learning_rate': 1.0}) self.assertEqual(len(opts), 1) self.assertEqual([op.type for op in opts], ["sgd"]) class TestOptimizerBackwardApplygrad(unittest.TestCase): def test_sgd_optimizer(self): def check_sgd_optimizer(optimizer_attr): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr=optimizer_attr) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01) with framework.program_guard(program, init_program): p_g = sgd_optimizer.backward(mean_out) opts = sgd_optimizer.apply_gradients(p_g) return opts opts = check_sgd_optimizer({'learning_rate': 1.1}) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "sgd"]) opts = check_sgd_optimizer({'learning_rate': 1.0}) self.assertEqual(len(opts), 1) self.assertEqual([op.type for op in opts], ["sgd"]) class TestMomentumOptimizer(unittest.TestCase): class MockMomentum(optimizer.MomentumOptimizer): def get_accumulators(self): return self._accumulators def get_velocity_str(self): return self._velocity_acc_str def test_vanilla_momentum_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) learning_rate = 0.01 momentum_optimizer = self.MockMomentum( learning_rate=learning_rate, momentum=0.2) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(momentum_optimizer.get_accumulators()), 0) with framework.program_guard(program, init_program): opts = momentum_optimizer.apply_gradients(params_grads) self.assertEqual(len(opts), 2) sgd_op = opts[-1] self.assertEqual([op.type for op in opts], ["scale", "momentum"]) self.assertFalse(sgd_op.attr('use_nesterov')) # Check accumulators accumulators = momentum_optimizer.get_accumulators() self.assertEqual(len(accumulators), 1) self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators) velocity_acc = accumulators[momentum_optimizer.get_velocity_str()] self.assertEqual(len(velocity_acc), 1) self.assertTrue(mul_x.name in velocity_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 2) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) self.assertEqual(init_ops[1].type, "fill_constant") self.assertAlmostEqual(init_ops[1].attr('value'), 0.0) def test_nesterov_momentum_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 momentum_optimizer = self.MockMomentum( learning_rate=learning_rate, momentum=0.2, use_nesterov=True) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(momentum_optimizer.get_accumulators()), 0) with framework.program_guard(program, init_program): opts = momentum_optimizer.apply_gradients(params_grads) self.assertEqual(len(opts), 2) sgd_op = opts[-1] self.assertEqual([op.type for op in opts], ["scale", "momentum"]) self.assertTrue(sgd_op.attr('use_nesterov')) # Check accumulators accumulators = momentum_optimizer.get_accumulators() self.assertEqual(len(accumulators), 1) self.assertTrue(momentum_optimizer.get_velocity_str() in accumulators) velocity_acc = accumulators[momentum_optimizer.get_velocity_str()] self.assertEqual(len(velocity_acc), 1) self.assertTrue(mul_x.name in velocity_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 2) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) self.assertEqual(init_ops[1].type, "fill_constant") self.assertAlmostEqual(init_ops[1].attr('value'), 0.0) class TestAdagradOptimizer(unittest.TestCase): class MockAdagrad(optimizer.AdagradOptimizer): def get_accumulators(self): return self._accumulators def get_moment_str(self): return self._moment_acc_str def test_adagrad_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 adagrad_optimizer = self.MockAdagrad( learning_rate=learning_rate, epsilon=1.0e-6) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(adagrad_optimizer.get_accumulators()), 0) with framework.program_guard(program, init_program): opts = adagrad_optimizer.apply_gradients(params_grads) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "adagrad"]) # Check accumulators accumulators = adagrad_optimizer.get_accumulators() self.assertEqual(len(accumulators), 1) self.assertTrue(adagrad_optimizer.get_moment_str() in accumulators) moment_acc = accumulators[adagrad_optimizer.get_moment_str()] self.assertEqual(len(moment_acc), 1) self.assertTrue(mul_x.name in moment_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 2) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) self.assertEqual(init_ops[1].type, "fill_constant") self.assertAlmostEqual(init_ops[1].attr('value'), 0.0) class TestAdamOptimizer(unittest.TestCase): class MockAdam(optimizer.AdamOptimizer): def get_accumulators(self): return self._accumulators def get_moment1_str(self): return self._moment1_acc_str def get_moment2_str(self): return self._moment2_acc_str def test_adam_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 adam_optimizer = self.MockAdam( learning_rate=learning_rate, beta1=0.9, beta2=0.999) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(adam_optimizer.get_accumulators()), 0) with framework.program_guard(program, init_program): opts = adam_optimizer.apply_gradients(params_grads) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "adam"]) # Check accumulators accumulators = adam_optimizer.get_accumulators() self.assertEqual(len(accumulators), 4) self.assertTrue(adam_optimizer.get_moment1_str() in accumulators) self.assertTrue(adam_optimizer.get_moment2_str() in accumulators) moment1_acc = accumulators[adam_optimizer.get_moment1_str()] moment2_acc = accumulators[adam_optimizer.get_moment2_str()] self.assertEqual(len(moment1_acc), 1) self.assertEqual(len(moment2_acc), 1) self.assertTrue(mul_x.name in moment1_acc) self.assertTrue(mul_x.name in moment2_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 5) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) class TestAdamaxOptimizer(unittest.TestCase): class MockAdamax(optimizer.AdamaxOptimizer): def get_accumulators(self): return self._accumulators def get_moment_str(self): return self._moment_acc_str def get_inf_norm_str(self): return self._inf_norm_acc_str def test_adamax_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 adamax_optimizer = self.MockAdamax( learning_rate=learning_rate, beta1=0.9, beta2=0.999) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(adamax_optimizer.get_accumulators()), 0) with framework.program_guard(program, init_program): opts = adamax_optimizer.apply_gradients(params_grads) self.assertEqual(len(opts), 3) self.assertEqual([op.type for op in opts], ["scale", "adamax", "scale"]) # Check accumulators accumulators = adamax_optimizer.get_accumulators() self.assertEqual(len(accumulators), 3) self.assertTrue(adamax_optimizer.get_moment_str() in accumulators) self.assertTrue(adamax_optimizer.get_inf_norm_str() in accumulators) moment_acc = accumulators[adamax_optimizer.get_moment_str()] inf_norm_acc = accumulators[adamax_optimizer.get_inf_norm_str()] self.assertEqual(len(moment_acc), 1) self.assertEqual(len(inf_norm_acc), 1) self.assertTrue(mul_x.name in moment_acc) self.assertTrue(mul_x.name in inf_norm_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 4) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) class TestDpsgdOptimizer(unittest.TestCase): def test_dpsgd_optimizer(self): def check_dpsgd_optimizer(optimizer_attr): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr=optimizer_attr) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) dpsgd_optimizer = optimizer.DpsgdOptimizer( learning_rate=0.01, clip=100.0, batch_size=16.0, sigma=0.0) opts, _ = dpsgd_optimizer.minimize(mean_out, init_program) return opts opts = check_dpsgd_optimizer({ 'learning_rate': 1.1, 'clip': 100.0, 'batch_size': 16.0, 'sigma': 4.0 }) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "dpsgd"]) class TestDecayedAdagradOptimizer(unittest.TestCase): class MockDecayedAdagrad(optimizer.DecayedAdagradOptimizer): def get_accumulators(self): return self._accumulators def get_moment_str(self): return self._moment_acc_str def test_decayed_adagrad_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 decayed_adagrad_optimizer = self.MockDecayedAdagrad( learning_rate=learning_rate, decay=0.95, epsilon=1.0e-6) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(decayed_adagrad_optimizer.get_accumulators()), 0) with framework.program_guard(program, init_program): opts = decayed_adagrad_optimizer.apply_gradients(params_grads) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "decayed_adagrad"]) # Check accumulators accumulators = decayed_adagrad_optimizer.get_accumulators() self.assertEqual(len(accumulators), 1) self.assertTrue( decayed_adagrad_optimizer.get_moment_str() in accumulators) moment_acc = accumulators[decayed_adagrad_optimizer.get_moment_str()] self.assertEqual(len(moment_acc), 1) self.assertTrue(mul_x.name in moment_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 2) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) self.assertEqual(init_ops[1].type, "fill_constant") self.assertAlmostEqual(init_ops[1].attr('value'), 0.0) class TestFtrlOptimizer(unittest.TestCase): class MockFtrl(optimizer.FtrlOptimizer): def get_accumulators(self): return self._accumulators def get_squared_str(self): return self._squared_acc_str def get_linear_str(self): return self._linear_acc_str def test_ftrl_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) learning_rate = 0.01 ftrl_optimizer = self.MockFtrl( learning_rate=learning_rate, l1=0.0, l2=0.0, lr_power=-0.5) params_grads = append_backward(mean_out) self.assertEqual(len(params_grads), 1) self.assertEqual(len(ftrl_optimizer.get_accumulators()), 0) with framework.program_guard(program, init_program): opts = ftrl_optimizer.apply_gradients(params_grads) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "ftrl"]) # Check accumulators accumulators = ftrl_optimizer.get_accumulators() self.assertEqual(len(accumulators), 2) self.assertTrue(ftrl_optimizer.get_squared_str() in accumulators) self.assertTrue(ftrl_optimizer.get_linear_str() in accumulators) squared_acc = accumulators[ftrl_optimizer.get_squared_str()] linear_acc = accumulators[ftrl_optimizer.get_linear_str()] self.assertEqual(len(squared_acc), 1) self.assertEqual(len(linear_acc), 1) self.assertTrue(mul_x.name in squared_acc) self.assertTrue(mul_x.name in linear_acc) # Check init_program init_ops = init_program.global_block().ops self.assertEqual(len(init_ops), 3) self.assertEqual(init_ops[0].type, "fill_constant") self.assertAlmostEqual(init_ops[0].attr('value'), learning_rate) class TestLookaheadOptimizer(unittest.TestCase): def test_lookahead_optimizer(self): init_program = framework.Program() program = framework.Program() block = program.global_block() init_block = init_program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x", optimize_attr={'learning_rate': 1.1}) init_mul_x = init_block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) sgd = optimizer.SGD(learning_rate=0.01) lookahead = optimizer.LookaheadOptimizer(sgd, alpha=0.5, k=5) with framework.program_guard(program, init_program): opts, _ = lookahead.minimize(mean_out) self.assertEqual(len(opts), 2) self.assertEqual([op.type for op in opts], ["scale", "sgd"]) class TestRecomputeOptimizer(unittest.TestCase): def net(self, return_input=False, with_dropout=False): program = framework.Program() block = program.global_block() mul_x = block.create_parameter( dtype="float32", shape=[5, 10], lod_level=0, name="mul.x") mul_y = block.create_var( dtype="float32", shape=[10, 8], lod_level=0, name="mul.y") mul_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out") if with_dropout == True: mul_out_drop = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="mul.out.dropout") mul_out_mask = block.create_var( dtype="uint8", shape=[5, 8], lod_level=0, name="mul.out.mask") b1 = block.create_parameter( dtype="float32", shape=[5, 8], lod_level=0, name="b1") b1_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="b1_out") b2 = block.create_parameter( dtype="float32", shape=[5, 8], lod_level=0, name="b2") b2_out = block.create_var( dtype="float32", shape=[5, 8], lod_level=0, name="b2_out") mean_out = block.create_var( dtype="float32", shape=[1], lod_level=0, name="mean.out") block.append_op( type="mul", inputs={"X": mul_x, "Y": mul_y}, outputs={"Out": mul_out}, attrs={"x_num_col_dims": 1}) if with_dropout == True: block.append_op( type='dropout', inputs={'X': [mul_out]}, outputs={'Out': [mul_out_drop], 'Mask': [mul_out_mask]}, attrs={'dropout_prob': 0.5, }) block.append_op( type="elementwise_add", inputs={"X": mul_out_drop, "Y": b1}, outputs={"Out": b1_out}) else: block.append_op( type="elementwise_add", inputs={"X": mul_out, "Y": b1}, outputs={"Out": b1_out}) block.append_op( type="elementwise_add", inputs={"X": b1_out, "Y": b2}, outputs={"Out": b2_out}) block.append_op( type="mean", inputs={"X": b2_out}, outputs={"Out": mean_out}) if return_input == True: return mul_x, mul_out, b1_out, b2_out, mean_out return mul_out, b1_out, b2_out, mean_out def test_no_checkpoint(self): mul_out, b1_out, b2_out, mean_out = self.net() self.assertEqual(len(mean_out.block.ops), 4) self.assertEqual([op.type for op in mean_out.block.ops], ["mul", "elementwise_add", "elementwise_add", "mean"]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 12) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_one_checkpoint(self): mul_out, b1_out, b2_out, mean_out = self.net() self.assertEqual(len(mean_out.block.ops), 4) self.assertEqual([op.type for op in mean_out.block.ops], ["mul", "elementwise_add", "elementwise_add", "mean"]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([b1_out]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 13) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul", "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_multi_checkpoint(self): mul_out, b1_out, b2_out, mean_out = self.net() self.assertEqual(len(mean_out.block.ops), 4) self.assertEqual([op.type for op in mean_out.block.ops], ["mul", "elementwise_add", "elementwise_add", "mean"]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([mul_out, b2_out]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 13) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add", "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_adjacent_checkpoint(self): mul_out, b1_out, b2_out, mean_out = self.net() self.assertEqual(len(mean_out.block.ops), 4) self.assertEqual([op.type for op in mean_out.block.ops], ["mul", "elementwise_add", "elementwise_add", "mean"]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([mul_out, b1_out]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 12) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_out_of_order_checkpoint(self): mul_out, b1_out, b2_out, mean_out = self.net() self.assertEqual(len(mean_out.block.ops), 4) self.assertEqual([op.type for op in mean_out.block.ops], ["mul", "elementwise_add", "elementwise_add", "mean"]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([b2_out, mul_out]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 13) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add", "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_input_as_checkpoints(self): mul_x, mul_out, b1_out, b2_out, mean_out = self.net(return_input=True) self.assertEqual(len(mean_out.block.ops), 4) self.assertEqual([op.type for op in mean_out.block.ops], ["mul", "elementwise_add", "elementwise_add", "mean"]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([mul_x, b2_out]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 14) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "mul", "elementwise_add", "elementwise_add_grad", "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_apply_gradients(self): mul_out, b1_out, b2_out, mean_out = self.net() sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([b1_out]) # apply backward params_grads = recompute_optimizer.backward( mean_out, startup_program=None, parameter_list=None, no_grad_set=None) # apply gradient program = mean_out.block.program with framework.program_guard(program, None): optimize_ops = recompute_optimizer.apply_gradients(params_grads) self.assertEqual(len(mean_out.block.ops), 13) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul", "elementwise_add_grad", "mul_grad", "sgd", "sgd", "sgd" ]) def test_load(self): mul_out, b1_out, b2_out, mean_out = self.net() sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([b1_out]) try: stat_dict = {} recompute_optimizer.load(stat_dict) except NotImplementedError as e: self.assertEqual( "load function is not supported by Recompute Optimizer for now", cpt.get_exception_message(e)) def test_dropout(self): """ If there are dropout layers in the forward nets, we should add a seed op """ mul_out, b1_out, b2_out, mean_out = self.net(with_dropout=True) self.assertEqual(len(mean_out.block.ops), 5) self.assertEqual( [op.type for op in mean_out.block.ops], ["mul", "dropout", "elementwise_add", "elementwise_add", "mean"]) sgd_optimizer = optimizer.SGD(learning_rate=1.0) recompute_optimizer = optimizer.RecomputeOptimizer(sgd_optimizer) recompute_optimizer._set_checkpoints([b1_out]) opts, params_grads = recompute_optimizer.minimize(mean_out) self.assertEqual(len(mean_out.block.ops), 17) self.assertEqual([op.type for op in mean_out.block.ops], [ "mul", "seed", "dropout", "elementwise_add", "elementwise_add", "mean", "fill_constant", "mean_grad", "elementwise_add_grad", "mul", "dropout", "elementwise_add_grad", "dropout_grad", "mul_grad", "sgd", "sgd", "sgd" ]) if __name__ == '__main__': unittest.main()