# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core from op_test import OpTest class TestInf(OpTest): def setUp(self): self.op_type = "isinf" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) x[0] = np.inf x[-1] = np.inf self.inputs = {'X': x} self.outputs = {'Out': np.array(True).astype(self.dtype)} def init_dtype(self): pass def test_output(self): self.check_output() class TestRaiseError(unittest.TestCase): def test_errors(self): def test_type(): fluid.layers.isfinite([10]) self.assertRaises(TypeError, test_type) def test_dtype(): data = fluid.data(shape=[10], dtype="float16", name="input") fluid.layers.isfinite(data) self.assertRaises(TypeError, test_dtype) @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestFP16Inf(TestInf): def init_dtype(self): self.dtype = np.float16 class TestNAN(OpTest): def setUp(self): self.op_type = "isnan" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) x[0] = np.nan x[-1] = np.nan self.inputs = {'X': x} self.outputs = {'Out': np.array(True).astype(self.dtype)} def init_dtype(self): pass def test_output(self): self.check_output() @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestFP16NAN(TestNAN): def init_dtype(self): self.dtype = np.float16 class TestIsfinite(OpTest): def setUp(self): self.op_type = "isfinite" self.dtype = np.float32 self.init_dtype() x = np.random.uniform(0.1, 1, [11, 17]).astype(self.dtype) x[0] = np.inf x[-1] = np.nan out = np.isinf(x) | np.isnan(x) self.inputs = {'X': x} self.outputs = {'Out': np.array(False).astype(self.dtype)} def init_dtype(self): pass def test_output(self): self.check_output() @unittest.skipIf(not core.is_compiled_with_cuda(), "core is not compiled with CUDA") class TestFP16Isfinite(TestIsfinite): def init_dtype(self): self.dtype = np.float16 class BadInputTest(unittest.TestCase): def test_error(self): with fluid.program_guard(fluid.Program()): def test_has_inf_bad_x(): data = [1, 2, 3] result = fluid.layers.has_inf(data) self.assertRaises(TypeError, test_has_inf_bad_x) def test_has_nan_bad_x(): data = [1, 2, 3] result = fluid.layers.has_nan(data) self.assertRaises(TypeError, test_has_nan_bad_x) with fluid.dygraph.guard(): data = paddle.zeros([2, 3]) result = paddle.fluid.layers.has_inf(data) expect_value = np.array([False]) self.assertEqual((result.numpy() == expect_value).all(), True) result = paddle.fluid.layers.has_nan(data) self.assertEqual((result.numpy() == expect_value).all(), True) if __name__ == '__main__': unittest.main()