# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test cloud role maker.""" import os import unittest class TestCloudRoleMaker(unittest.TestCase): """ Test cases for PaddleCloudRoleMaker. """ def setUp(self): """Set up, set envs.""" os.environ["PADDLE_TRAINERS_NUM"] = "2" os.environ[ "PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36001,127.0.0.2:36001" def test_pslib_1(self): """Test cases for pslib.""" import paddle.fluid as fluid from paddle.fluid.incubate.fleet.parameter_server.pslib import fleet from paddle.fluid.incubate.fleet.base.role_maker import GeneralRoleMaker os.environ["POD_IP"] = "127.0.0.1" os.environ["PADDLE_PORT"] = "36001" os.environ["TRAINING_ROLE"] = "TRAINER" os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36001" os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36002" os.environ["PADDLE_TRAINER_ID"] = "0" role_maker = GeneralRoleMaker(init_timeout_seconds=100, run_timeout_seconds=100, http_ip_port="127.0.0.1:36003") #role_maker.generate_role() place = fluid.CPUPlace() exe = fluid.Executor(place) #fleet.init(role_maker) train_program = fluid.Program() startup_program = fluid.Program() scope = fluid.Scope() with fluid.program_guard(train_program, startup_program): show = fluid.layers.data(name="show", shape=[-1, 1], \ dtype="float32", lod_level=1, append_batch_size=False) fc = fluid.layers.fc(input=show, size=1, act=None) label = fluid.layers.data(name="click", shape=[-1, 1], \ dtype="int64", lod_level=1, append_batch_size=False) label_cast = fluid.layers.cast(label, dtype='float32') cost = fluid.layers.log_loss(fc, label_cast) try: adam = fluid.optimizer.Adam(learning_rate=0.000005) adam = fleet.distributed_optimizer(adam) adam.minimize([cost], [scope]) fleet.run_server() http_server_d = {} http_server_d["running"] = False size_d = {} role_maker._GeneralRoleMaker__start_kv_server(http_server_d, size_d) except: print("do not support pslib test, skip") return from paddle.fluid.incubate.fleet.base.role_maker import MockBarrier mb = MockBarrier() mb.barrier() mb.barrier_all() mb.all_reduce(1) mb.all_gather(1) os.environ["POD_IP"] = "127.0.0.1" os.environ["PADDLE_PORT"] = "36005" os.environ["TRAINING_ROLE"] = "TRAINER" os.environ["PADDLE_TRAINER_ENDPOINTS"] = "127.0.0.1:36005" os.environ["PADDLE_PSERVERS_IP_PORT_LIST"] = "127.0.0.1:36006" os.environ["PADDLE_IS_BARRIER_ALL_ROLE"] = "0" role_maker = GeneralRoleMaker(path="test_mock1") role_maker.generate_role() if __name__ == "__main__": unittest.main()