#!/usr/bin/env python from paddle.trainer_config_helpers import * height = 224 width = 224 num_class = 1000 batch_size = get_config_arg('batch_size', int, 64) layer_num = get_config_arg("layer_num", int, 50) is_infer = get_config_arg("is_infer", bool, False) args = { 'height': height, 'width': width, 'color': True, 'num_class': num_class, 'is_infer': is_infer } define_py_data_sources2( "train.list", "test.list", module="provider", obj="process", args=args) settings( batch_size=batch_size, learning_rate=0.01 / batch_size, learning_method=MomentumOptimizer(0.9), regularization=L2Regularization(0.0005 * batch_size)) #######################Network Configuration ############# def conv_bn_layer(name, input, filter_size, num_filters, stride, padding, channels=None, active_type=ReluActivation()): """ A wrapper for conv layer with batch normalization layers. Note: conv layer has no activation. """ tmp = img_conv_layer( name=name + "_conv", input=input, filter_size=filter_size, num_channels=channels, num_filters=num_filters, stride=stride, padding=padding, act=LinearActivation(), bias_attr=False) return batch_norm_layer( name=name + "_bn", input=tmp, act=active_type, use_global_stats=is_infer) def bottleneck_block(name, input, num_filters1, num_filters2): """ A wrapper for bottlenect building block in ResNet. Last conv_bn_layer has no activation. Addto layer has activation of relu. """ last_name = conv_bn_layer( name=name + '_branch2a', input=input, filter_size=1, num_filters=num_filters1, stride=1, padding=0) last_name = conv_bn_layer( name=name + '_branch2b', input=last_name, filter_size=3, num_filters=num_filters1, stride=1, padding=1) last_name = conv_bn_layer( name=name + '_branch2c', input=last_name, filter_size=1, num_filters=num_filters2, stride=1, padding=0, active_type=LinearActivation()) return addto_layer( name=name + "_addto", input=[input, last_name], act=ReluActivation()) def mid_projection(name, input, num_filters1, num_filters2, stride=2): """ A wrapper for middile projection in ResNet. projection shortcuts are used for increasing dimensions, and other shortcuts are identity branch1: projection shortcuts are used for increasing dimensions, has no activation. branch2x: bottleneck building block, shortcuts are identity. """ # stride = 2 branch1 = conv_bn_layer( name=name + '_branch1', input=input, filter_size=1, num_filters=num_filters2, stride=stride, padding=0, active_type=LinearActivation()) last_name = conv_bn_layer( name=name + '_branch2a', input=input, filter_size=1, num_filters=num_filters1, stride=stride, padding=0) last_name = conv_bn_layer( name=name + '_branch2b', input=last_name, filter_size=3, num_filters=num_filters1, stride=1, padding=1) last_name = conv_bn_layer( name=name + '_branch2c', input=last_name, filter_size=1, num_filters=num_filters2, stride=1, padding=0, active_type=LinearActivation()) return addto_layer( name=name + "_addto", input=[branch1, last_name], act=ReluActivation()) img = data_layer(name='image', size=height * width * 3) def deep_res_net(res2_num=3, res3_num=4, res4_num=6, res5_num=3): """ A wrapper for 50,101,152 layers of ResNet. res2_num: number of blocks stacked in conv2_x res3_num: number of blocks stacked in conv3_x res4_num: number of blocks stacked in conv4_x res5_num: number of blocks stacked in conv5_x """ # For ImageNet # conv1: 112x112 tmp = conv_bn_layer( "conv1", input=img, filter_size=7, channels=3, num_filters=64, stride=2, padding=3) tmp = img_pool_layer(name="pool1", input=tmp, pool_size=3, stride=2) # conv2_x: 56x56 tmp = mid_projection( name="res2_1", input=tmp, num_filters1=64, num_filters2=256, stride=1) for i in xrange(2, res2_num + 1, 1): tmp = bottleneck_block( name="res2_" + str(i), input=tmp, num_filters1=64, num_filters2=256) # conv3_x: 28x28 tmp = mid_projection( name="res3_1", input=tmp, num_filters1=128, num_filters2=512) for i in xrange(2, res3_num + 1, 1): tmp = bottleneck_block( name="res3_" + str(i), input=tmp, num_filters1=128, num_filters2=512) # conv4_x: 14x14 tmp = mid_projection( name="res4_1", input=tmp, num_filters1=256, num_filters2=1024) for i in xrange(2, res4_num + 1, 1): tmp = bottleneck_block( name="res4_" + str(i), input=tmp, num_filters1=256, num_filters2=1024) # conv5_x: 7x7 tmp = mid_projection( name="res5_1", input=tmp, num_filters1=512, num_filters2=2048) for i in xrange(2, res5_num + 1, 1): tmp = bottleneck_block( name="res5_" + str(i), input=tmp, num_filters1=512, num_filters2=2048) tmp = img_pool_layer( name='avgpool', input=tmp, pool_size=7, stride=1, pool_type=AvgPooling()) return fc_layer(input=tmp, size=num_class, act=SoftmaxActivation()) if layer_num == 50: resnet = deep_res_net(3, 4, 6, 3) elif layer_num == 101: resnet = deep_res_net(3, 4, 23, 3) elif layer_num == 152: resnet = deep_res_net(3, 8, 36, 3) else: print("Wrong layer number.") if is_infer: outputs(resnet) else: lbl = data_layer(name="label", size=num_class) loss = cross_entropy(name='loss', input=resnet, label=lbl) outputs(loss)