/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/gserver/gradientmachines/GradientMachine.h" #include "paddle/trainer/TrainerConfigHelper.h" #pragma once struct GradientMachinePrivate { std::shared_ptr machine; template inline T& cast(void* ptr) { return *(T*)(ptr); } }; struct OptimizationConfigPrivate { std::shared_ptr trainer_config; paddle::OptimizationConfig config; const paddle::OptimizationConfig& getConfig() { if (trainer_config != nullptr) { return trainer_config->getOptConfig(); } else { return config; } } }; struct TrainerConfigPrivate { std::shared_ptr conf; TrainerConfigPrivate() {} }; struct ModelConfigPrivate { std::shared_ptr conf; }; struct ArgumentsPrivate { std::vector outputs; inline paddle::Argument& getArg(size_t idx) throw(RangeError) { if (idx < outputs.size()) { return outputs[idx]; } else { RangeError e; throw e; } } template std::shared_ptr& cast(void* rawPtr) const { return *(std::shared_ptr*)(rawPtr); } };