# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import paddle import unittest import tempfile import numpy as np from paddle.static import InputSpec from paddle.fluid.framework import _enable_legacy_dygraph from paddle.jit.layer import Layer from paddle.fluid.dygraph.dygraph_to_static.program_translator import ProgramTranslator paddle.seed(1) class Net(paddle.nn.Layer): def __init__(self): super(Net, self).__init__() self.fc1 = paddle.nn.Linear(4, 4) self.fc2 = paddle.nn.Linear(4, 4) self._bias = 0.4 @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')]) def forward(self, x): out = self.fc1(x) out = self.fc2(out) out = paddle.nn.functional.relu(out) out = paddle.mean(out) return out @paddle.jit.to_static(input_spec=[InputSpec([None, 4], dtype='float32')]) def infer(self, input): out = self.fc2(input) out = out + self._bias out = paddle.mean(out) return out class TestMultiLoad(unittest.TestCase): def test_multi_load(self): self.temp_dir = tempfile.TemporaryDirectory() x = paddle.full([2, 4], 2) model = Net() program_translator = ProgramTranslator() program_translator.enable(False) forward_out1 = model.forward(x) infer_out1 = model.infer(x) program_translator.enable(True) model_path = os.path.join(self.temp_dir.name, 'multi_program') paddle.jit.save(model, model_path, combine_params=True) place = paddle.CPUPlace() if paddle.is_compiled_with_cuda(): place = paddle.CUDAPlace(0) jit_layer = Layer() jit_layer.load(model_path, place) forward_out2 = jit_layer.forward(x) infer_out2 = jit_layer.infer(x) self.assertEqual(np.allclose(forward_out1, forward_out2[0]), True) self.assertEqual(np.allclose(infer_out1, infer_out2[0]), True) self.temp_dir.cleanup() if __name__ == '__main__': unittest.main()