// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #ifdef PADDLE_WITH_CUDA #include #endif #ifdef PADDLE_WITH_HIP #include #endif #include "paddle/fluid/platform/cuda_device_function.h" #include "paddle/fluid/platform/float16.h" namespace paddle { namespace operators { namespace kernel_primitives { namespace details { #ifdef __HIPCC__ constexpr int kReduceMaxThread = 256; constexpr int kWarpSize = 64; #else constexpr int kReduceMaxThread = 128; constexpr int kWarpSize = 32; #endif // kGlobalMode: block reduce, each block gets an output; // kLocalMode: thread reduce, each thread gets an output; enum ReduceMode { kGlobalMode, kLocalMode }; template class MPTypeTrait { public: using Type = T; }; template <> class MPTypeTrait { public: using Type = float; }; /** * @brief Will be used in BlockYReduce, get the index of reduce_num in shared * memory. */ __device__ __forceinline__ int SharedMemoryIndex(int index) { return (threadIdx.y + index) * blockDim.x + threadIdx.x; } template __device__ __forceinline__ T WarpReduce(T val, ReduceOp reducer) { unsigned mask = 0u; CREATE_SHFL_MASK(mask, true); for (int stride = details::kWarpSize / 2; stride > 0; stride >>= 1) { T temp = paddle::platform::CudaShuffleDownSync(mask, val, stride); val = reducer(val, temp); } return val; } /* e.g. * |---------block---------| * |warp0|warp1|warp2|warp3| * |0~31|32~63|64~95|96~127| ---->blockDim.x = 128 * \|/ \|/ \|/ \|/ ---->1. First WarpReduce in each warp * res0 res1 res2 res3 ---->2. Store result of each warp to shared memory * \ \ / / ---->3. Load the result above from shared memory * res to warp0 and process the second WarpReduce */ /** * @brief BlockXReduce reduce along blockDim.x. */ template __device__ __forceinline__ T BlockXReduce(T val, ReduceOp reducer) { __syncthreads(); using details::kWarpSize; __shared__ T shared[2 * kWarpSize]; int block_dim_x = blockDim.x; if (blockDim.x > kWarpSize) { block_dim_x = blockDim.x / kWarpSize; int lane = threadIdx.x % kWarpSize; int tid = threadIdx.y * blockDim.x + threadIdx.x; int wid = tid / kWarpSize; int bid = threadIdx.y; val = WarpReduce(val, reducer); if (lane == 0) { shared[wid] = val; } __syncthreads(); val = shared[bid * block_dim_x + lane]; } unsigned mask = 0u; CREATE_SHFL_MASK(mask, true); for (int stride = 1; stride < block_dim_x; stride <<= 1) { T temp = paddle::platform::CudaShuffleDownSync(mask, val, stride); val = reducer(val, temp); } return val; } /** * @brief BlockYReduce reduce along blockDim.y. */ template __device__ __forceinline__ T BlockYReduce(T val, ReduceOp reducer) { __shared__ T shared_memory[details::kReduceMaxThread]; shared_memory[SharedMemoryIndex(0)] = val; for (int stride = blockDim.y / 2; stride > 0; stride >>= 1) { __syncthreads(); if (threadIdx.y < stride && threadIdx.y + stride < blockDim.y) { T temp = shared_memory[SharedMemoryIndex(stride)]; val = reducer(val, temp); } shared_memory[SharedMemoryIndex(0)] = val; } return val; } } // namespace details /** * @brief Perform unary calculation according to OpFunc. Size of input and * output are the same. * * @template paraments * InT: Data type of in. * OutT: Data type of out. * NX: The number of data columns loaded by each thread. * NY: The number of data rows loaded by each thread. * BlockSize: Identifies the current device thread index method. For GPU, * threadIdx.x is used as the thread index, and for xpu, core_id() is used as * the index. Currently only GPU was supported. * OpFunc: Compute functor which has an operator() as following: * template * struct XxxFunctor { * HOSTDEVICE OutT operator()(const InT& a) const { * return ...; * } * }; * * @param: * out: The register pointer of out, the size is NX * NY. * in: The register pointer of in, the size is NX * NY. * compute: Compute function which was declared like OpFunc(). */ template __device__ __forceinline__ void ElementwiseUnary(OutT* out, const InT* in, OpFunc compute) { #pragma unroll for (int idx = 0; idx < NX * NY; idx++) { out[idx] = static_cast(compute(in[idx])); } } /** * @brief Binary calculation according to OpFunc. Size of The input and output * are the same. * * @template paraments * InT: Data type of in1 and in2. * OutT: Data type of out. * NX: The number of data columns loaded by each thread. * NY: The number of data rows loaded by each thread. * BlockSize: Identifies the current device thread index method. For GPU, * threadIdx.x is used as the thread index, and for xpu, core_id() is used as * the index. Currently only GPU was supported. * OpFunc: Compute functor which has an operator() as following: * template * struct XxxFunctor { * HOSTDEVICE OutT operator()(const InT& a, const InT& b) const { * return ...; * } * }; * * @param: * out: The register pointer of out, the size is NX * NY. * in1: The register pointer of fist input, size is NX * NY. * in2: The register pointer of second input, size is NX * NY. * compute: Compute function which was declared like OpFunc(). */ template __device__ __forceinline__ void ElementwiseBinary(OutT* out, const InT* in1, const InT* in2, OpFunc compute) { #pragma unroll for (int idx = 0; idx < NX * NY; ++idx) { out[idx] = static_cast(compute(in1[idx], in2[idx])); } } /** * @brief Ternary calculation according to OpFunc. Size of input and output * are the same. * * @template paraments * InT: Data type of in1 and in2. * OutT: Data type of out. * NX: The number of data columns loaded by each thread. * NY: The number of data rows loaded by each thread. * BlockSize: Identifies the current device thread index method. For GPU, * threadIdx.x is used as the thread index, and for xpu, core_id() is used as * the index. Currently only GPU was supported. * OpFunc: Compute functor which has an operator() as following * template * struct XxxFunctor { * HOSTDEVICE OutT operator()(const InT& a, const InT& b, const InT& c) * const { * return ...; * } * }; * * @param * out: The register pointer of out, the size is NX * NY. * in1: The register pointer of fist input, size is NX * NY. * in2: The register pointer of second input, size is NX * NY. * in3: The register pointer of third input, size is NX * NY. * compute: Compute function which was declared like OpFunc(). */ template __device__ __forceinline__ void ElementwiseTernary(OutT* out, const InT* in1, const InT* in2, const InT* in3, OpFunc compute) { #pragma unroll for (int idx = 0; idx < NX * NY; ++idx) { out[idx] = static_cast(compute(in1[idx], in2[idx], in3[idx])); } } /** * @brief Multivariate calculation according to OpFunc. Size of input and output * are the same. * * @template paraments * InT: Data type of in1 and in2. * OutT: Data type of out. * NX: The number of data columns loaded by each thread. * NY: The number of data rows loaded by each thread. * BlockSize: Identifies the current device thread index method. For GPU, * threadIdx.x is used as the thread index, and for xpu, core_id() is used as * the index. Currently only GPU was supported. * Arity: The size of ins * OpFunc: Compute functor which has an operator() as following: * template * struct XxxFunctor { * HOSTDEVICE OutT operator()(const InT* args) const { * return ...; * } * }; * * @param * out: The register pointer of out, the size is NX * NY. * ins: An array of pointers consisting of multiple inputs. * compute: Compute function which was declared like OpFunc(). */ template __device__ __forceinline__ void ElementwiseAny(OutT* out, InT (*ins)[NX * NY], OpFunc compute) { InT args[Arity]; #pragma unroll for (int idx = 0; idx < NX * NY; ++idx) { #pragma unroll for (int j = 0; j < Arity; ++j) { args[j] = ins[j][idx]; } out[idx] = static_cast(compute(args)); } } /** * @brief Binary calculation according to OpFunc. Shape of in1 and in2 are the * different. Shape of in1 is [1, NX], but in2's shape is [NY, NX], the output * shape is [NY, NX]. * * @template paraments * InT: Data type of in1 and in2. * OutT: Data type of out. * NX: The number of data columns loaded by each thread. * NY: The number of data rows loaded by each thread. * BlockSize: Identifies the current device thread index method. For GPU, * threadIdx.x is used as the thread index, and for xpu, core_id() is used as * the index. Currently only GPU was supported. * OpFunc: Compute functor which has an operator() as following * template * struct XxxFunctor { * HOSTDEVICE OutT operator()(const InT& a, const InT& b) const { * return ...; * } * }; * * @param * out: The register pointer of out, the size is NX * NY. * in1: The register pointer of fist input, size is NX * 1. * in2: The register pointer of second input, size is NX * NY. * compute: Compute function which was declared like OpFunc(). */ template __device__ __forceinline__ void CycleBinary(OutT* out, const T* in1, const T* in2, OpFunc compute) { #pragma unroll for (int idx = 0; idx < NX; idx++) { #pragma unroll for (int idy = 0; idy < NY; idy++) { out[idx + idy * NX] = static_cast(compute(in1[idx], in2[idx + idy * NX])); } } } /** * @brief The Reduce provides collective methods for computing a parallel * reduction of items partitioned across a CUDA block and intra thread. When * ReduceMode == kLocalMode, thread reduce along nx. When ReduceMode == * kGlobalMode, use shared memory to reduce between threads. * * @template paraments * T: The type of data. * NX: The number of data continuously loaded by each thread. * NY: The number of data rows loaded by each thread, only NY = 1 was supported. * BlockSize: Identifies the current device thread index method. For GPU, * threadIdx.x is used as the thread index, and for xpu, core_id() is used as * the index. Currently only GPU was supported. * ReduceFunctor: Compute functor which has an operator() as following * template * struct ReduceFunctor { * HOSTDEVICE OutT operator()(const InT& a, const InT& b) const { * return ...; * } * }; * ReduceMode: Reduce mode, can be kLocalMode, kGlobalMode. * * @param * out: The register pointer of out, the size is NX * NY. * in: The register pointer of in, the size is NX * NY. * reducer: Compute function which was declared like ReduceFunctor(). * reduce_last_dim: if the last dim gets involved in reduction. */ template __device__ __forceinline__ void Reduce(T* out, const T* in, ReduceFunctor reducer, bool reduce_last_dim) { int block_index = blockDim.y; if (Mode == details::ReduceMode::kGlobalMode) { bool block_reduce_y = (!reduce_last_dim) && (block_index > 1); // when reduce is not required for the last dim, and reduce num has been // split into multiple threads if (block_reduce_y) { #pragma unroll for (int i = 0; i < NY * NX; i++) { // reduce along blockdim.y out[i] = details::BlockYReduce(out[i], reducer); } } // when last dimension need to be reduced if (reduce_last_dim) { #pragma unroll for (int i = 0; i < NY * NX; i++) { // reduce along blockDim.x out[i] = details::BlockXReduce(out[i], reducer); } } } else { // else kLocalMode #pragma unroll for (int i = 0; i < NY; ++i) { #pragma unroll for (int j = 0; j < NX; ++j) { out[i] = reducer(out[i], in[i * NX + j]); } } } } } // namespace kernel_primitives } // namespace operators } // namespace paddle