# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle import paddle.fluid as fluid def p_norm(x, axis, porder, keepdims=False): if axis is None: axis = -1 xp = np.power(np.abs(x), porder) s = np.sum(xp, axis=axis, keepdims=keepdims) r = np.power(s, 1.0 / porder) return r def frobenius_norm(x, axis=None, keepdims=False): if isinstance(axis, list): axis = tuple(axis) if axis is None: axis = (-2, -1) r = np.linalg.norm(x, ord='fro', axis=axis, keepdims=keepdims) return r class TestFrobeniusNormOp(OpTest): def setUp(self): self.op_type = "frobenius_norm" self.init_test_case() x = (np.random.random(self.shape) + 1.0).astype(self.dtype) norm = frobenius_norm(x, self.axis, self.keepdim) self.reduce_all = (len(self.axis) == len(self.shape)) self.inputs = {'X': x} self.attrs = { 'dim': list(self.axis), 'keep_dim': self.keepdim, 'reduce_all': self.reduce_all } self.outputs = {'Out': norm} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') def init_test_case(self): self.shape = [2, 3, 4, 5] self.axis = (1, 2) self.keepdim = False self.dtype = "float64" class TestFrobeniusNormOp2(TestFrobeniusNormOp): def init_test_case(self): self.shape = [5, 5, 5] self.axis = (0, 1) self.keepdim = True self.dtype = "float32" def test_check_grad(self): self.check_grad(['X'], 'Out') class TestPnormOp(OpTest): def setUp(self): self.op_type = "p_norm" self.init_test_case() x = (np.random.random(self.shape) + 0.5).astype(self.dtype) norm = p_norm(x, self.axis, self.porder, self.keepdim) self.inputs = {'X': x} self.attrs = { 'epsilon': self.epsilon, 'axis': self.axis, 'keepdim': self.keepdim, 'porder': float(self.porder) } self.outputs = {'Out': norm} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['X'], 'Out') def init_test_case(self): self.shape = [2, 3, 4, 5] self.axis = 1 self.epsilon = 1e-12 self.porder = 2.0 self.keepdim = False self.dtype = "float64" class TestPnormOp2(TestPnormOp): def init_test_case(self): self.shape = [3, 20, 3] self.axis = 2 self.epsilon = 1e-12 self.porder = 2.0 self.keepdim = True self.dtype = "float32" def test_check_grad(self): self.check_grad(['X'], 'Out') if __name__ == '__main__': unittest.main()