# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import paddle.fluid.core as core from op_test import OpTest import paddle import paddle.fluid as fluid from paddle.fluid import Program, program_guard class TestCrossOp(OpTest): def setUp(self): self.op_type = "cross" self.initTestCase() self.inputs = { 'X': np.random.random(self.shape).astype(self.dtype), 'Y': np.random.random(self.shape).astype(self.dtype) } self.init_output() def initTestCase(self): self.attrs = {'dim': -2} self.dtype = np.float64 self.shape = (1024, 3, 1) def init_output(self): x = np.squeeze(self.inputs['X'], 2) y = np.squeeze(self.inputs['Y'], 2) z_list = [] for i in range(1024): z_list.append(np.cross(x[i], y[i])) self.outputs = {'Out': np.array(z_list).reshape(self.shape)} def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out') class TestCrossOpCase1(TestCrossOp): def initTestCase(self): self.shape = (2048, 3) self.dtype = np.float32 def init_output(self): z_list = [] for i in range(2048): z_list.append(np.cross(self.inputs['X'][i], self.inputs['Y'][i])) self.outputs = {'Out': np.array(z_list).reshape(self.shape)} class TestCrossAPI(unittest.TestCase): def input_data(self): self.data_x = np.array( [[1.0, 1.0, 1.0], [2.0, 2.0, 2.0], [3.0, 3.0, 3.0]]) self.data_y = np.array( [[1.0, 1.0, 1.0], [1.0, 1.0, 1.0], [1.0, 1.0, 1.0]]) def test_cross_api(self): self.input_data() # case 1: with program_guard(Program(), Program()): x = fluid.layers.data(name='x', shape=[-1, 3]) y = fluid.layers.data(name='y', shape=[-1, 3]) z = fluid.layers.cross(x, y, dim=1) exe = fluid.Executor(fluid.CPUPlace()) res, = exe.run(feed={'x': self.data_x, 'y': self.data_y}, fetch_list=[z.name], return_numpy=False) expect_out = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) self.assertTrue(np.allclose(expect_out, np.array(res))) # case 2: with program_guard(Program(), Program()): x = fluid.layers.data(name='x', shape=[-1, 3]) y = fluid.layers.data(name='y', shape=[-1, 3]) z = fluid.layers.cross(x, y) exe = fluid.Executor(fluid.CPUPlace()) res, = exe.run(feed={'x': self.data_x, 'y': self.data_y}, fetch_list=[z.name], return_numpy=False) expect_out = np.array([[-1.0, -1.0, -1.0], [2.0, 2.0, 2.0], [-1.0, -1.0, -1.0]]) self.assertTrue(np.allclose(expect_out, np.array(res))) def test_dygraph_api(self): self.input_data() # case 1: with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(self.data_x) y = fluid.dygraph.to_variable(self.data_y) z = fluid.layers.cross(x, y) np_z = z.numpy() expect_out = np.array([[-1.0, -1.0, -1.0], [2.0, 2.0, 2.0], [-1.0, -1.0, -1.0]]) self.assertTrue(np.allclose(expect_out, np_z)) # case 2: with fluid.dygraph.guard(): x = fluid.dygraph.to_variable(self.data_x) y = fluid.dygraph.to_variable(self.data_y) z = fluid.layers.cross(x, y, dim=1) np_z = z.numpy() expect_out = np.array([[0.0, 0.0, 0.0], [0.0, 0.0, 0.0], [0.0, 0.0, 0.0]]) self.assertTrue(np.allclose(expect_out, np_z)) if __name__ == '__main__': unittest.main()