# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # #Licensed under the Apache License, Version 2.0 (the "License"); #you may not use this file except in compliance with the License. #You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # #Unless required by applicable law or agreed to in writing, software #distributed under the License is distributed on an "AS IS" BASIS, #WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. #See the License for the specific language governing permissions and #limitations under the License. import unittest import numpy as np from op_test import OpTest class TestUnpoolOp(OpTest): def setUp(self): self.op_type = "detection_output" self.init_test_case() #loc.shape ((1, 4, 4, 1, 1)) #conf.shape ((1, 4, 2, 1, 1)) loc = np.array([[[[[0.1]], [[0.1]], [[0.1]], [[0.1]]], [[[0.1]], [[0.1]], [[0.1]], [[0.1]]], [[[0.1]], [[0.1]], [[0.1]], [[0.1]]], [[[0.1]], [[0.1]], [[0.1]], [[0.1]]]]]) conf = np.array([[[[[0.1]], [[0.9]]], [[[0.2]], [[0.8]]], [[[0.3]], [[0.7]]], [[[0.4]], [[0.6]]]]]) priorbox = np.array([ 0.1, 0.1, 0.5, 0.5, 0.1, 0.1, 0.2, 0.2, 0.2, 0.2, 0.6, 0.6, 0.1, 0.1, 0.2, 0.2, 0.3, 0.3, 0.7, 0.7, 0.1, 0.1, 0.2, 0.2, 0.4, 0.4, 0.8, 0.8, 0.1, 0.1, 0.2, 0.2 ]) output = np.array([ 0, 1, 0.68997443, 0.099959746, 0.099959746, 0.50804031, 0.50804031 ]) self.inputs = { 'Loc': loc.astype('float32'), 'Conf': conf.astype('float32'), 'PriorBox': priorbox.astype('float32') } self.attrs = { 'num_classes': self.num_classes, 'top_k': self.top_k, 'nms_top_k': self.nms_top_k, 'background_label_id': self.background_label_id, 'nms_threshold': self.nms_threshold, 'confidence_threshold': self.confidence_threshold, } self.outputs = {'Out': output.astype('float32')} def test_check_output(self): self.check_output() def init_test_case(self): self.num_classes = 2 self.top_k = 10 self.nms_top_k = 20 self.background_label_id = 0 self.nms_threshold = 0.01 self.confidence_threshold = 0.01 if __name__ == '__main__': unittest.main()