# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and from paddle.fluid.optimizer import Momentum, LarsMomentumOptimizer from .meta_optimizer_base import MetaOptimizerBase import logging class LarsOptimizer(MetaOptimizerBase): def __init__(self, optimizer): super(LarsOptimizer, self).__init__(optimizer) self.inner_opt = optimizer self.lars_opt = None # we do not allow meta optimizer to be inner optimizer currently self.meta_optimizers_white_list = ["GraphExecutionOptimizer"] self.meta_optimizers_black_list = [] def _set_basic_info(self, loss, role_maker, user_defined_optimizer, user_defined_strategy): super(LarsOptimizer, self)._set_basic_info( loss, role_maker, user_defined_optimizer, user_defined_strategy) opt = self.inner_opt if not isinstance(opt, Momentum): return configs = self.user_defined_strategy.lars_configs self.lars_opt = LarsMomentumOptimizer( learning_rate=opt._learning_rate, momentum=opt._momentum, lars_coeff=configs['lars_coeff'], lars_weight_decay=configs['lars_weight_decay'], parameter_list=opt._parameter_list, regularization=opt.regularization, grad_clip=opt._grad_clip, name=opt._name) def _can_apply(self): if self.user_defined_strategy.lars: if not isinstance(self.inner_opt, Momentum): logging.warn( "lars need the inner optimizer to be Momentum optimizer.") return False return True return False def _disable_strategy(self, dist_strategy): dist_strategy.lars = False dist_strategy.lars_configs = {} def _enable_strategy(self, dist_strategy): dist_strategy.lars = True dist_strategy.lars_configs = { "lars_coeff": 0.01, "lars_weight_decay": 0.0005, } def backward(self, loss, startup_program=None, parameter_list=None, no_grad_set=None, callbacks=None): return self.lars_opt.backward(loss, startup_program, parameter_list, no_grad_set, callbacks) def minimize_impl(self, loss, startup_program=None, parameter_list=None, no_grad_set=None): optimize_ops, params_grads = \ self.lars_opt.minimize(loss, startup_program, parameter_list, no_grad_set) return optimize_ops, params_grads