/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include #include #include "cub/cub.cuh" #include "paddle/fluid/framework/data_layout.h" #include "paddle/fluid/memory/malloc.h" #include "paddle/fluid/operators/batch_norm_op.h" #include "paddle/fluid/operators/norm_utils.h" #include "paddle/fluid/platform/cudnn_helper.h" #include "paddle/fluid/platform/float16.h" #include "paddle/fluid/platform/nccl_helper.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using DataLayout = framework::DataLayout; template using CudnnDataType = platform::CudnnDataType; template __global__ void KeLocalStats(const T *x, int N, int M, int C, T *mean_var) { typedef cub::BlockReduce BlockReduce; __shared__ typename BlockReduce::TempStorage temp_storage; for (int k = blockIdx.x; k < C; k += gridDim.x) { T x_sum = 0; T x2_sum = 0; for (int i = threadIdx.x; i < N * M; i += BlockDim) { int id = layout == framework::DataLayout::kNCHW ? (i / M) * C * M + k * M + i % M : i * C + k; T x_in = x[id]; x_sum += x_in; x2_sum += x_in * x_in; } __syncthreads(); T out = BlockReduce(temp_storage).Reduce(x_sum, cub::Sum()); __syncthreads(); if (threadIdx.x == 0) { mean_var[k] = out / (N * M); } out = BlockReduce(temp_storage).Reduce(x2_sum, cub::Sum()); __syncthreads(); if (threadIdx.x == 0) { mean_var[k + C] = out / (N * M); } } if (blockIdx.x == 0 && threadIdx.x == 0) { mean_var[2 * C] = static_cast(1.0); } } template __global__ void KeSyncAndMovingStats(T *means, T *variances, T *num_dev, const int C, const T momentum, const double epsilon, T *sv_mean_data, T *sv_inv_var_data, T *moving_means, T *moving_variances) { // sync stats across multi-devices int gid = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; for (int i = gid; i < C; i += stride) { T mean = means[i] / (*num_dev); T var = variances[i] / (*num_dev); var = var - mean * mean; // sync stats sv_mean_data[i] = mean; sv_inv_var_data[i] = 1.0 / sqrt(var + epsilon); variances[i] = var; // moving stats moving_means[i] = moving_means[i] * momentum + mean * (1. - momentum); moving_variances[i] = moving_variances[i] * momentum + var * (1. - momentum); } } template static __global__ void KeNormAffine(const T *x, const T *scale, const T *bias, const T *mean, const T *variance, const double epsilon, const int C, const int M, const int num, T *y) { int gid = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; for (int i = gid; i < num; i += stride) { const int c = layout == framework::DataLayout::kNCHW ? (i / M) % C : i % C; y[i] = (x[i] - mean[c]) / sqrt(variance[c] + epsilon) * scale[c] + bias[c]; } } template class SyncBatchNormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { double epsilon = static_cast(ctx.Attr("epsilon")); const float momentum = ctx.Attr("momentum"); const bool is_test = ctx.Attr("is_test"); const std::string layout_str = ctx.Attr("data_layout"); const DataLayout layout = framework::StringToDataLayout(layout_str); const bool use_global_stats = ctx.Attr("use_global_stats"); PADDLE_ENFORCE( !use_global_stats, "sync_batch_norm doesn't support to set use_global_stats True. ", "Please use batch_norm in this case."); const auto *x = ctx.Input("X"); const auto &x_dims = x->dims(); PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5, "The Input dim size should be between 2 and 5"); int N, C, H, W, D; ExtractNCWHD(x_dims, layout, &N, &C, &H, &W, &D); int x_numel = x->numel(); const T *x_d = x->data(); const T *s_d = ctx.Input("Scale")->data(); const T *b_d = ctx.Input("Bias")->data(); auto *y = ctx.Output("Y"); T *y_d = y->mutable_data(ctx.GetPlace()); const T *mean_data = nullptr; const T *var_data = nullptr; auto &dev_ctx = ctx.cuda_device_context(); auto stream = dev_ctx.stream(); auto *comm = dev_ctx.nccl_comm(); const int block = 512; int max_threads = dev_ctx.GetMaxPhysicalThreadCount(); paddle::memory::AllocationPtr alloc_ptr{nullptr}; if (is_test) { const auto *est_mean = ctx.Input("Mean"); const auto *est_var = ctx.Input("Variance"); mean_data = est_mean->data(); var_data = est_var->data(); } else { // x, x^2, 1, here 1 is used to calc device num // device num also can be got from platform::DeviceContextPool const int bytes = (C * 2 + 1) * sizeof(T); alloc_ptr = memory::Alloc(dev_ctx, bytes); T *stats = reinterpret_cast(alloc_ptr->ptr()); const int threads = 256; int grid = std::min(C, (max_threads + threads - 1) / threads); if (layout == framework::DataLayout::kNCHW) { KeLocalStats< T, threads, framework::DataLayout::kNCHW><<>>( x_d, N, H * W * D, C, stats); } else { KeLocalStats< T, threads, framework::DataLayout::kNHWC><<>>( x_d, N, H * W * D, C, stats); } Tensor c_g_st; T *c_g_st_d = c_g_st.mutable_data({2 * C + 1}, platform::CPUPlace()); auto gplace = boost::get(ctx.GetPlace()); memory::Copy(platform::CPUPlace(), c_g_st_d, gplace, stats, bytes, 0); int dtype = platform::ToNCCLDataType(x->type()); // In-place operation PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce( stats, stats, 2 * C + 1, static_cast(dtype), ncclSum, comm, stream)); // moving mean/variance auto *mean_out = ctx.Output("MeanOut"); auto *variance_out = ctx.Output("VarianceOut"); T *est_mean_data = mean_out->mutable_data(ctx.GetPlace()); T *est_var_data = variance_out->mutable_data(ctx.GetPlace()); auto *saved_mean = ctx.Output("SavedMean"); auto *saved_inv_variance = ctx.Output("SavedVariance"); T *sv_mean_data = saved_mean->mutable_data(ctx.GetPlace()); T *sv_inv_var_data = saved_inv_variance->mutable_data(ctx.GetPlace()); // Note, Input('Mean')/Input('Variance') share variable with // Output('MeanOut')/Output('VarianceOut') KeSyncAndMovingStats<<<(C + block - 1) / block, block, 0, stream>>>( stats, stats + C, stats + 2 * C, C, momentum, epsilon, sv_mean_data, sv_inv_var_data, est_mean_data, est_var_data); mean_data = sv_mean_data; var_data = stats + C; } int grid2 = (std::min(x_numel, max_threads) + block - 1) / block; if (layout == framework::DataLayout::kNCHW) { KeNormAffine<<>>( x_d, s_d, b_d, mean_data, var_data, epsilon, C, H * W * D, x_numel, y_d); } else { KeNormAffine<<>>( x_d, s_d, b_d, mean_data, var_data, epsilon, C, H * W * D, x_numel, y_d); } } }; template __global__ void KeBackwardLocalStats(const T *dy, const T *x, const T *means, int N, int M, int C, T *sum_dy_prod) { typedef cub::BlockReduce BlockReduce; __shared__ typename BlockReduce::TempStorage temp_storage; for (int k = blockIdx.x; k < C; k += gridDim.x) { T sum1 = 0; T sum2 = 0; T mean = means[k]; for (int i = threadIdx.x; i < N * M; i += blockDim.x) { int id = layout == framework::DataLayout::kNCHW ? (i / M) * C * M + k * M + i % M : i * C + k; T g = dy[id]; sum1 += g; sum2 += g * (x[id] - mean); } __syncthreads(); T out = BlockReduce(temp_storage).Reduce(sum1, cub::Sum()); __syncthreads(); if (threadIdx.x == 0) { sum_dy_prod[k] = out; } out = BlockReduce(temp_storage).Reduce(sum2, cub::Sum()); __syncthreads(); if (threadIdx.x == 0) { sum_dy_prod[k + C] = out; } } if (blockIdx.x == 0 && threadIdx.x == 0) { sum_dy_prod[2 * C] = static_cast(1.0); } } template static __global__ void KeBNBackwardScaleBias(const T *dy, const T *x, const T *mean, const T *inv_variance, const double epsilon, const int N, const int C, const int HxW, T *dscale, T *dbias) { const int outer_size = C; const int inner_size = N * HxW; typedef cub::BlockReduce BlockReduce; __shared__ typename BlockReduce::TempStorage temp_storage; for (int i = blockIdx.x; i < outer_size; i += gridDim.x) { T ds_sum = static_cast(0); T db_sum = static_cast(0); T inv_var_i = inv_variance[i]; T mean_i = mean[i]; for (int j = threadIdx.x; j < inner_size; j += blockDim.x) { const int id = layout == framework::DataLayout::kNCHW ? ((j / HxW) * C + i) * HxW + (j % HxW) : j * outer_size + i; ds_sum += dy[id] * (x[id] - mean_i); db_sum += dy[id]; } __syncthreads(); double os = BlockReduce(temp_storage) .Reduce(static_cast(ds_sum), cub::Sum()); __syncthreads(); double ob = BlockReduce(temp_storage) .Reduce(static_cast(db_sum), cub::Sum()); __syncthreads(); if (threadIdx.x == 0) { dscale[i] = static_cast(os * inv_var_i); dbias[i] = static_cast(ob); } __syncthreads(); } } template static __global__ void KeBNBackwardData(const T *dy, const T *x, const T *beta, const T *mean, const T *inv_variance, const T *g_sum_dy, const T *g_sum_dy_prod, const T *num_dev, const double epsilon, const int C, const int HxW, const int num, T *dx) { int gid = blockIdx.x * blockDim.x + threadIdx.x; int stride = blockDim.x * gridDim.x; T scale = static_cast(C) / num; T dev_num = num_dev[0]; for (int i = gid; i < num; i += stride) { const int c = layout == framework::DataLayout::kNCHW ? i / HxW % C : i % C; T inv_var = inv_variance[c]; T s_d = beta[c]; T gvar = -1.0 * (g_sum_dy_prod[c] / dev_num) * s_d * inv_var * (inv_var * inv_var); T gmean = -1.0 * (g_sum_dy[c] / dev_num) * s_d * inv_var; dx[i] = dy[i] * s_d * inv_var + gmean * scale + gvar * scale * (x[i] - mean[c]); } } // Deriving the Gradient for the Backward Pass of Batch Normalization // https://kevinzakka.github.io/2016/09/14/batch_normalization/ template class SyncBatchNormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "It must use CUDAPlace."); double epsilon = static_cast(ctx.Attr("epsilon")); const std::string layout_str = ctx.Attr("data_layout"); const DataLayout layout = framework::StringToDataLayout(layout_str); const auto *x = ctx.Input("X"); const auto *d_y = ctx.Input(framework::GradVarName("Y")); const auto *scale = ctx.Input("Scale"); const auto &x_dims = x->dims(); PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5, "The Input dim size should be between 2 and 5"); int N, C, H, W, D; ExtractNCWHD(x_dims, layout, &N, &C, &H, &W, &D); // init output auto *d_x = ctx.Output(framework::GradVarName("X")); auto *d_scale = ctx.Output(framework::GradVarName("Scale")); auto *d_bias = ctx.Output(framework::GradVarName("Bias")); d_x->mutable_data(ctx.GetPlace()); if (d_scale && d_bias) { d_scale->mutable_data(ctx.GetPlace()); d_bias->mutable_data(ctx.GetPlace()); } PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL); PADDLE_ENFORCE_EQ(scale->dims()[0], C); std::vector dims; std::vector strides; if (layout == DataLayout::kNCHW) { dims = {N, C, H, W, D}; strides = {C * H * W * D, H * W * D, W * D, D, 1}; } else { dims = {N, C, H, W, D}; strides = {H * W * C * D, 1, W * D * C, D * C, C}; } const T *x_d = x->data(); const T *dy_d = d_y->data(); auto &dev_ctx = ctx.cuda_device_context(); auto stream = dev_ctx.stream(); auto *comm = dev_ctx.nccl_comm(); const T *saved_mean = ctx.Input("SavedMean")->data(); const T *saved_inv_var = ctx.Input("SavedVariance")->data(); const int bytes = (C * 2 + 1) * sizeof(T); auto alloc_ptr = memory::Alloc(dev_ctx, bytes); T *stats = reinterpret_cast(alloc_ptr->ptr()); const int threads = 256; int max_threads = dev_ctx.GetMaxPhysicalThreadCount(); int grid = std::min(C, (max_threads + threads - 1) / threads); int x_numel = x->numel(); int fsize = H * W * D; if (layout == framework::DataLayout::kNCHW) { KeBackwardLocalStats< T, threads, framework::DataLayout::kNCHW><<>>( dy_d, x_d, saved_mean, N, fsize, C, stats); } else { KeBackwardLocalStats< T, threads, framework::DataLayout::kNHWC><<>>( dy_d, x_d, saved_mean, N, fsize, C, stats); } int dtype = platform::ToNCCLDataType(x->type()); // In-place operation PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::ncclAllReduce( stats, stats, 2 * C + 1, static_cast(dtype), ncclSum, comm, stream)); const int block = 512; int grid2 = (std::min(x_numel, max_threads) + block - 1) / block; if (layout == framework::DataLayout::kNCHW) { if (d_scale && d_bias) { KeBNBackwardScaleBias< T, threads, framework::DataLayout::kNCHW><<>>( dy_d, x_d, saved_mean, saved_inv_var, epsilon, N, C, fsize, d_scale->data(), d_bias->data()); } if (d_x) { KeBNBackwardData< T, framework::DataLayout::kNCHW><<>>( dy_d, x_d, scale->data(), saved_mean, saved_inv_var, stats, stats + C, stats + 2 * C, epsilon, C, fsize, x->numel(), d_x->data()); } } else { if (d_scale && d_bias) { KeBNBackwardScaleBias< T, threads, framework::DataLayout::kNHWC><<>>( dy_d, x_d, saved_mean, saved_inv_var, epsilon, N, C, fsize, d_scale->data(), d_bias->data()); } if (d_x) { KeBNBackwardData< T, framework::DataLayout::kNHWC><<>>( dy_d, x_d, scale->data(), saved_mean, saved_inv_var, stats, stats + C, stats + 2 * C, epsilon, C, fsize, x->numel(), d_x->data()); } } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_CUDA_KERNEL( sync_batch_norm, ops::SyncBatchNormKernel, ops::SyncBatchNormKernel); REGISTER_OP_CUDA_KERNEL( sync_batch_norm_grad, ops::SyncBatchNormGradKernel, ops::SyncBatchNormGradKernel);