# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle from ..fluid.framework import in_dygraph_mode from .distribution import Distribution class ExponentialFamily(Distribution): r""" ExponentialFamily is the base class for probability distributions belonging to exponential family, whose probability mass/density function has the form is defined below ExponentialFamily is derived from `paddle.distribution.Distribution`. .. math:: f_{F}(x; \theta) = \exp(\langle t(x), \theta\rangle - F(\theta) + k(x)) where :math:`\theta` denotes the natural parameters, :math:`t(x)` denotes the sufficient statistic, :math:`F(\theta)` is the log normalizer function for a given family and :math:`k(x)` is the carrier measure. Distribution belongs to exponential family referring to https://en.wikipedia.org/wiki/Exponential_family """ @property def _natural_parameters(self): raise NotImplementedError def _log_normalizer(self): raise NotImplementedError @property def _mean_carrier_measure(self): raise NotImplementedError def entropy(self): """caculate entropy use `bregman divergence` https://www.lix.polytechnique.fr/~nielsen/EntropyEF-ICIP2010.pdf """ entropy_value = -self._mean_carrier_measure natural_parameters = [] for parameter in self._natural_parameters: parameter = parameter.detach() parameter.stop_gradient = False natural_parameters.append(parameter) log_norm = self._log_normalizer(*natural_parameters) if in_dygraph_mode(): grads = paddle.grad( log_norm.sum(), natural_parameters, create_graph=True) else: grads = paddle.static.gradients(log_norm.sum(), natural_parameters) entropy_value += log_norm for p, g in zip(natural_parameters, grads): entropy_value -= p * g return entropy_value