/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "mkldnn.hpp" #include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/operators/quantize_op.h" #include "paddle/fluid/platform/mkldnn_helper.h" namespace paddle { namespace operators { using mkldnn::memory; using mkldnn::primitive; using mkldnn::reorder; using platform::to_void_cast; using Tensor = framework::Tensor; using framework::DataLayout; using mkldnn::stream; using platform::GetMKLDNNFormat; template class QuantOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* input = ctx.Input("Input"); auto scale_data = ctx.Attr("Scale"); auto* output = ctx.Output("Output"); auto& dev_ctx = ctx.template device_context(); const auto& engine = dev_ctx.GetEngine(); std::vector pipeline; std::vector src_tz = paddle::framework::vectorize2int(input->dims()); std::vector dst_tz = paddle::framework::vectorize2int(output->dims()); const T* input_data = input->data(); mkldnn::primitive_attr attri; int mask = 0; attri.set_output_scales(mask, {scale_data}); auto src_md = platform::MKLDNNMemDesc({src_tz}, memory::data_type::f32, input->format()); auto src_pd = mkldnn::memory::primitive_desc(src_md, engine); auto src_memory = std::make_shared(src_pd, to_void_cast(input_data)); std::shared_ptr src_memory_p = std::shared_ptr(new primitive::at(*src_memory)); bool is_negative = ctx.Attr("is_negative_input"); mkldnn::memory::primitive_desc dst_pd; std::shared_ptr dst_memory; if (is_negative) { int8_t* output_data = output->mutable_data(ctx.GetPlace()); auto dst_md = platform::MKLDNNMemDesc({dst_tz}, memory::data_type::s8, memory::format::nhwc); dst_pd = mkldnn::memory::primitive_desc(dst_md, engine); dst_memory.reset( new mkldnn::memory(dst_pd, to_void_cast(output_data))); } else { uint8_t* output_data = output->mutable_data(ctx.GetPlace()); auto dst_md = platform::MKLDNNMemDesc({dst_tz}, memory::data_type::u8, memory::format::nhwc); dst_pd = mkldnn::memory::primitive_desc(dst_md, engine); dst_memory.reset( new mkldnn::memory(dst_pd, to_void_cast(output_data))); } auto reorder_pd = std::shared_ptr( new reorder::primitive_desc(src_pd, dst_pd, attri)); auto reorder_p = std::shared_ptr( new reorder(*reorder_pd, *src_memory_p, *dst_memory)); pipeline.push_back(*reorder_p); stream(stream::kind::eager).submit(pipeline).wait(); output->set_layout(DataLayout::kMKLDNN); output->set_format(GetMKLDNNFormat(*dst_memory)); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; // TODO(Xiaoli) Support FP32->S8 quantization. REGISTER_OP_KERNEL(quantize, MKLDNN, ::paddle::platform::CPUPlace, ops::QuantOpKernel);