# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Any from warnings import warn import functools from contextlib import ContextDecorator from paddle.fluid import core from paddle.fluid.core import (_RecordEvent, TracerEventType) _is_profiler_used = False _has_optimizer_wrapped = False _AllowedEventTypeList = [ TracerEventType.Dataloader, TracerEventType.ProfileStep, TracerEventType.Forward, TracerEventType.Backward, TracerEventType.Optimization, TracerEventType.PythonOp, TracerEventType.PythonUserDefined ] class RecordEvent(ContextDecorator): r""" Interface for recording a time range by user defined. Args: name (str): Name of the record event. event_type (TracerEventType, optional): Optional, default value is `TracerEventType.PythonUserDefined`. It is reserved for internal purpose, and it is better not to specify this parameter. Examples: .. code-block:: python :name: code-example1 import paddle import paddle.profiler as profiler # method1: using context manager with profiler.RecordEvent("record_add"): data1 = paddle.randn(shape=[3]) data2 = paddle.randn(shape=[3]) result = data1 + data2 # method2: call begin() and end() record_event = profiler.RecordEvent("record_add") record_event.begin() data1 = paddle.randn(shape=[3]) data2 = paddle.randn(shape=[3]) result = data1 + data2 record_event.end() **Note**: RecordEvent will take effect only when :ref:`Profiler ` is on and at the state of `RECORD`. """ def __init__( self, name: str, event_type: TracerEventType = TracerEventType.PythonUserDefined): self.name = name self.event_type = event_type self.event = None def __enter__(self): self.begin() return self def __exit__(self, exc_type: Any, exc_value: Any, traceback: Any): self.end() def begin(self): r""" Record the time of beginning. Examples: .. code-block:: python :name: code-example2 import paddle import paddle.profiler as profiler record_event = profiler.RecordEvent("record_sub") record_event.begin() data1 = paddle.randn(shape=[3]) data2 = paddle.randn(shape=[3]) result = data1 - data2 record_event.end() """ if not _is_profiler_used: return if self.event_type not in _AllowedEventTypeList: warn("Only TracerEvent Type in [{}, {}, {}, {}, {}, {},{}]\ can be recorded.".format(*_AllowedEventTypeList)) self.event = None else: self.event = _RecordEvent(self.name, self.event_type) def end(self): r''' Record the time of ending. Examples: .. code-block:: python :name: code-example3 import paddle import paddle.profiler as profiler record_event = profiler.RecordEvent("record_mul") record_event.begin() data1 = paddle.randn(shape=[3]) data2 = paddle.randn(shape=[3]) result = data1 * data2 record_event.end() ''' if self.event: self.event.end() def load_profiler_result(filename: str): r""" Load dumped profiler data back to memory. Args: filename(str): Name of the exported protobuf file of profiler data. Returns: ``ProfilerResult`` object, which stores profiling data. Examples: .. code-block:: python # required: gpu import paddle.profiler as profiler with profiler.Profiler( targets=[profiler.ProfilerTarget.CPU, profiler.ProfilerTarget.GPU], scheduler = (3, 10)) as p: for iter in range(10): #train() p.step() p.export('test_export_protobuf.pb', format='pb') profiler_result = profiler.load_profiler_result('test_export_protobuf.pb') """ return core.load_profiler_result(filename) def in_profiler_mode(): return _is_profiler_used == True def wrap_optimizers(): def optimizer_warpper(func): @functools.wraps(func) def warpper(*args, **kwargs): if in_profiler_mode(): with RecordEvent('Optimization Step', event_type=TracerEventType.Optimization): return func(*args, **kwargs) else: return func(*args, **kwargs) return warpper global _has_optimizer_wrapped if _has_optimizer_wrapped == True: return import paddle.optimizer as optimizer for classname in optimizer.__all__: if classname != 'Optimizer': classobject = getattr(optimizer, classname) if getattr(classobject, 'step', None) != None: classobject.step = optimizer_warpper(classobject.step) _has_optimizer_wrapped = True