# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle.fluid as fluid import paddle from op_test import OpTest class TestFlattenOp(OpTest): def setUp(self): self.op_type = "flatten2" self.init_test_case() self.inputs = {"X": np.random.random(self.in_shape).astype("float64")} self.init_attrs() self.outputs = { "Out": self.inputs["X"].reshape(self.new_shape), "XShape": np.random.random(self.in_shape).astype("float32") } def test_check_output(self): self.check_output(no_check_set=["XShape"]) def test_check_grad(self): self.check_grad(["X"], "Out") def init_test_case(self): self.in_shape = (3, 2, 4, 5) self.axis = 1 self.new_shape = (3, 40) def init_attrs(self): self.attrs = {"axis": self.axis} class TestFlattenOp1(TestFlattenOp): def init_test_case(self): self.in_shape = (3, 2, 5, 4) self.axis = 0 self.new_shape = (1, 120) class TestFlattenOpWithDefaultAxis(TestFlattenOp): def init_test_case(self): self.in_shape = (10, 2, 2, 3) self.new_shape = (10, 12) def init_attrs(self): self.attrs = {} class TestFlattenOpSixDims(TestFlattenOp): def init_test_case(self): self.in_shape = (3, 2, 3, 2, 4, 4) self.axis = 4 self.new_shape = (36, 16) class TestStaticFlattenInferShapePythonAPI(unittest.TestCase): def execute_api(self, x, axis=1): return fluid.layers.flatten(x, axis=axis) def test_static_api(self): paddle.enable_static() main_prog = paddle.static.Program() with paddle.static.program_guard(main_prog, paddle.static.Program()): x = paddle.static.data(name="x", shape=[-1, 3, -1, -1], dtype='float32') out = self.execute_api(x, axis=2) self.assertTrue((-1, -1) == out.shape) class TestFlatten2OpError(unittest.TestCase): def test_errors(self): with fluid.program_guard(fluid.Program(), fluid.Program()): input_data = np.random.random((3, 2, 4, 5)).astype("float64") def test_Variable(): # the input type must be Variable fluid.layers.flatten(input_data, axis=1) self.assertRaises(TypeError, test_Variable) def test_type(): # dtype must be float32, float64, int8, int32, int64, uint8. x2 = fluid.layers.data(name='x2', shape=[3, 2, 4, 5], dtype='float16') fluid.layers.flatten(x2, axis=1) self.assertRaises(TypeError, test_type) if __name__ == "__main__": unittest.main()