# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import paddle import paddle.fluid as fluid import os import dist_ctr_reader from test_dist_base import TestDistRunnerBase, runtime_main IS_SPARSE = True os.environ['PADDLE_ENABLE_REMOTE_PREFETCH'] = "1" # Fix seed for test fluid.default_startup_program().random_seed = 1 fluid.default_main_program().random_seed = 1 class TestDistCTR2x2(TestDistRunnerBase): def get_model(self, batch_size=2): dnn_input_dim, lr_input_dim = dist_ctr_reader.load_data_meta() """ network definition """ dnn_data = fluid.layers.data(name="dnn_data", shape=[-1, 1], dtype="int64", lod_level=1, append_batch_size=False) lr_data = fluid.layers.data(name="lr_data", shape=[-1, 1], dtype="int64", lod_level=1, append_batch_size=False) label = fluid.layers.data(name="click", shape=[-1, 1], dtype="int64", lod_level=0, append_batch_size=False) # build dnn model dnn_layer_dims = [128, 64, 32, 1] dnn_embedding = fluid.layers.embedding( is_distributed=False, input=dnn_data, size=[dnn_input_dim, dnn_layer_dims[0]], param_attr=fluid.ParamAttr( name="deep_embedding", initializer=fluid.initializer.Constant(value=0.01)), is_sparse=IS_SPARSE) dnn_pool = fluid.layers.sequence_pool(input=dnn_embedding, pool_type="sum") dnn_out = dnn_pool for i, dim in enumerate(dnn_layer_dims[1:]): fc = fluid.layers.fc( input=dnn_out, size=dim, act="relu", param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.01)), name='dnn-fc-%d' % i) dnn_out = fc # build lr model lr_embbding = fluid.layers.embedding( is_distributed=False, input=lr_data, size=[lr_input_dim, 1], param_attr=fluid.ParamAttr( name="wide_embedding", initializer=fluid.initializer.Constant(value=0.01)), is_sparse=IS_SPARSE) lr_pool = fluid.layers.sequence_pool(input=lr_embbding, pool_type="sum") merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1) predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax') acc = fluid.layers.accuracy(input=predict, label=label) auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict, label=label) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = paddle.mean(x=cost) inference_program = paddle.fluid.default_main_program().clone() regularization = None use_l2_decay = bool(os.getenv('USE_L2_DECAY', 0)) if use_l2_decay: regularization = fluid.regularizer.L2DecayRegularizer( regularization_coeff=1e-1) use_lr_decay = bool(os.getenv('LR_DECAY', 0)) lr = 0.0001 if use_lr_decay: lr = fluid.layers.exponential_decay(learning_rate=0.0001, decay_steps=10000, decay_rate=0.999, staircase=True) sgd_optimizer = fluid.optimizer.SGD(learning_rate=lr, regularization=regularization) sgd_optimizer.minimize(avg_cost) dataset = dist_ctr_reader.Dataset() train_reader = paddle.batch(dataset.train(), batch_size=batch_size) test_reader = paddle.batch(dataset.test(), batch_size=batch_size) return inference_program, avg_cost, train_reader, test_reader, None, predict if __name__ == "__main__": runtime_main(TestDistCTR2x2)