// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/inference/api/analysis_predictor.h" #include #include #include #include #include #include #include #include #include "paddle/fluid/framework/feed_fetch_method.h" #include "paddle/fluid/framework/feed_fetch_type.h" #include "paddle/fluid/framework/ir/fuse_pass_base.h" #include "paddle/fluid/framework/ir/pass.h" #include "paddle/fluid/framework/naive_executor.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/var_type_traits.h" #include "paddle/fluid/framework/version.h" #include "paddle/fluid/inference/analysis/helper.h" #include "paddle/fluid/inference/analysis/passes/memory_optimize_pass.h" #include "paddle/fluid/inference/api/helper.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/api/paddle_inference_pass.h" #include "paddle/fluid/inference/utils/singleton.h" #include "paddle/fluid/memory/memcpy.h" #include "paddle/fluid/platform/cpu_helper.h" #ifdef PADDLE_WITH_MKLML #include "paddle/fluid/platform/dynload/mklml.h" #endif #include "paddle/fluid/platform/gpu_info.h" #include "paddle/fluid/platform/place.h" #include "paddle/fluid/platform/profiler.h" #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/inference/api/mkldnn_quantizer.h" #endif #if PADDLE_WITH_TENSORRT #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" #include "paddle/fluid/inference/tensorrt/trt_int8_calibrator.h" #endif namespace paddle { using inference::Singleton; #if PADDLE_WITH_TENSORRT using inference::tensorrt::TRTInt8Calibrator; using inference::tensorrt::TRTCalibratorEngine; using inference::tensorrt::TRTCalibratorEngineManager; #endif namespace { bool IsPersistable(const framework::VarDesc *var) { if (var->Persistable() && var->GetType() != framework::proto::VarType::FEED_MINIBATCH && var->GetType() != framework::proto::VarType::FETCH_LIST && var->GetType() != framework::proto::VarType::RAW) { return true; } return false; } } // namespace bool PaddleTensorToLoDTensor(const PaddleTensor &pt, framework::LoDTensor *t, const platform::Place &place) { framework::DDim ddim = framework::make_ddim(pt.shape); void *input_ptr; if (pt.dtype == PaddleDType::INT64) { input_ptr = t->mutable_data(ddim, place); } else if (pt.dtype == PaddleDType::FLOAT32) { input_ptr = t->mutable_data(ddim, place); } else if (pt.dtype == PaddleDType::INT32) { input_ptr = t->mutable_data(ddim, place); } else { LOG(ERROR) << "unsupported feed type " << pt.dtype; return false; } PADDLE_ENFORCE_NOT_NULL( input_ptr, paddle::platform::errors::Fatal( "Cannot convert to LoDTensor because LoDTensor creation failed.")); PADDLE_ENFORCE_NOT_NULL( pt.data.data(), paddle::platform::errors::InvalidArgument( "The data contained in the input PaddleTensor is illegal.")); if (platform::is_cpu_place(place)) { // TODO(panyx0718): Init LoDTensor from existing memcpy to save a copy. std::memcpy(static_cast(input_ptr), pt.data.data(), pt.data.length()); } else { #ifdef PADDLE_WITH_CUDA platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance(); auto *dev_ctx = static_cast(pool.Get(place)); auto dst_gpu_place = boost::get(place); memory::Copy(dst_gpu_place, static_cast(input_ptr), platform::CPUPlace(), pt.data.data(), pt.data.length(), dev_ctx->stream()); #else PADDLE_THROW(paddle::platform::errors::Fatal( "Not compile with CUDA, should not reach here.")); #endif } // TODO(Superjomn) Low performance, need optimization for heavy LoD copy. framework::LoD lod; for (auto &level : pt.lod) { lod.emplace_back(level); } t->set_lod(lod); return true; } bool AnalysisPredictor::Init( const std::shared_ptr &parent_scope, const std::shared_ptr &program) { VLOG(3) << "Predictor::init()"; if (config_.with_profile_) { LOG(WARNING) << "Profiler is activated, which might affect the performance"; auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll : platform::ProfilerState::kCPU; platform::EnableProfiler(tracking_device); } else { LOG(INFO) << "Profiler is deactivated, and no profiling report will be " "generated."; } // no matter with or without MKLDNN paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads()); if (!PrepareScope(parent_scope)) { return false; } if (!CreateExecutor()) { return false; } if (!PrepareProgram(program)) { return false; } // Prepare executor, create local variables. if (!PrepareExecutor()) { return true; } // Get the feed_target_names and fetch_target_names PrepareFeedFetch(); return true; } bool AnalysisPredictor::PrepareScope( const std::shared_ptr &parent_scope) { if (parent_scope) { PADDLE_ENFORCE_NOT_NULL( parent_scope, "Both program and parent_scope should be set in Clone mode."); scope_ = parent_scope; status_is_cloned_ = true; } else { paddle::framework::InitDevices(false); scope_.reset(new paddle::framework::Scope()); status_is_cloned_ = false; } sub_scope_ = &scope_->NewScope(); return true; } bool AnalysisPredictor::PrepareProgram( const std::shared_ptr &program) { if (!program) { if (!LoadProgramDesc()) return false; // If not cloned, the parameters should be loaded. // If config_.ir_optim() is True, parameters is loaded in // OptimizeInferenceProgram(), but other persistable variables // (like RAW type var) are not created in scope. // If config_.ir_optim() is False, parameters is loaded in LoadParameters(), // still need to create other persistable variables. // So in both case, create persistable variables at first. if (!CheckOperatorCompatible()) { LOG(WARNING) << "WARNING: Results may be DIFF! " "Please use the corresponding version of the model and " "prediction library, and do not use the develop branch."; } executor_->CreateVariables(*inference_program_, 0, true, sub_scope_); // if enable_ir_optim_ is false, // the analysis pass(op fuse, graph analysis, trt subgraph, mkldnn etc) will // not be executed. OptimizeInferenceProgram(); } else { // If the program is passed from external, no need to optimize it, this // logic is used in the clone scenario. inference_program_ = program; } executor_->CreateVariables(*inference_program_, 0, false, sub_scope_); return true; } bool AnalysisPredictor::CreateExecutor() { if (config_.use_gpu_) { status_use_gpu_ = true; place_ = paddle::platform::CUDAPlace(config_.device_id_); } else { place_ = paddle::platform::CPUPlace(); } executor_.reset(new paddle::framework::NaiveExecutor(place_)); return true; } bool AnalysisPredictor::PrepareExecutor() { executor_->Prepare(sub_scope_, *inference_program_, 0, config_.use_feed_fetch_ops_); PADDLE_ENFORCE_NOT_NULL(sub_scope_); return true; } void AnalysisPredictor::MkldnnPreSet(const std::vector &inputs) { #ifdef PADDLE_WITH_MKLDNN VLOG(2) << "AnalysisPredictor::Run get_cur_mkldnn_session_id=" << platform::get_cur_mkldnn_session_id(); // In cache clearing mode. if (config_.mkldnn_cache_capacity_ > 0) { VLOG(2) << "In mkldnn cache clear mode."; platform::set_cur_mkldnn_session_id( platform::kMKLDNNSessionID_CacheClearing); platform::set_cur_input_shape_cache_capacity( config_.mkldnn_cache_capacity_); // Set current_input_shape for caching dynamic shape. std::stringstream ss; for (size_t i = 0; i < inputs.size(); ++i) { for (size_t j = 0; j < inputs[i].shape.size(); ++j) { ss << inputs[i].shape[j] << "-"; } } VLOG(2) << "Set input shape=" << ss.str(); platform::set_cur_input_shape_str(ss.str()); } #endif } void AnalysisPredictor::MkldnnPostReset() { #ifdef PADDLE_WITH_MKLDNN // In cache clearing mode. if (config_.mkldnn_cache_capacity_ > 0) { paddle::platform::set_cur_mkldnn_session_id( platform::kMKLDNNSessionID_Default); platform::set_cur_input_shape_cache_capacity(0); platform::set_cur_input_shape_str(""); } #endif } bool AnalysisPredictor::Run(const std::vector &inputs, std::vector *output_data, int batch_size) { paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads()); #ifdef PADDLE_WITH_MKLDNN if (config_.use_mkldnn_) MkldnnPreSet(inputs); #endif VLOG(3) << "Predictor::predict"; inference::Timer timer; timer.tic(); // set feed variable framework::Scope *scope = sub_scope_ ? sub_scope_ : scope_.get(); PADDLE_ENFORCE_NOT_NULL(scope, "The scope should not be nullptr."); if (!SetFeed(inputs, scope)) { LOG(ERROR) << "fail to set feed"; return false; } // Run the inference program // if share variables, we need not create variables executor_->Run(); // get fetch variable if (!GetFetch(output_data, scope)) { LOG(ERROR) << "fail to get fetches"; return false; } VLOG(3) << "predict cost: " << timer.toc() << "ms"; // All the containers in the scope will be hold in inference, but the // operators assume that the container will be reset after each batch. // Here is a bugfix, collect all the container variables, and reset then to a // bool; the next time, the operator will call MutableData and construct a new // container again, so that the container will be empty for each batch. if (sub_scope_) { tensor_array_batch_cleaner_.CollectNoTensorVars(sub_scope_); } tensor_array_batch_cleaner_.ResetNoTensorVars(); // recover the cpu_math_library_num_threads to 1, in order to avoid thread // conflict when integrating it into deployment service. paddle::platform::SetNumThreads(1); #ifdef PADDLE_WITH_MKLDNN if (config_.use_mkldnn_) MkldnnPostReset(); #endif #if defined(PADDLE_WITH_MKLML) && defined(_LINUX) // Frees unused memory allocated by the IntelĀ® MKL Memory Allocator to // avoid memory leak. See: // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers platform::dynload::MKL_Free_Buffers(); // We don't support windows since MKL_Free_Buffers is not in // mklml_win_2019.0.1.20181227.zip. We will upgrade mklml_win version later. #endif return true; } bool AnalysisPredictor::SetFeed(const std::vector &inputs, framework::Scope *scope) { VLOG(3) << "Predictor::set_feed"; if (inputs.size() != feeds_.size()) { LOG(ERROR) << "wrong feed input size, need " << feeds_.size() << " but get " << inputs.size(); return false; } // Cache the inputs memory for better concurrency performance. feed_tensors_.resize(inputs.size()); for (size_t i = 0; i < inputs.size(); ++i) { framework::LoDTensor *input = &feed_tensors_[i]; if (!PaddleTensorToLoDTensor(inputs[i], input, place_)) { return false; } int idx = -1; if (config_.specify_input_name_) { auto name = inputs[i].name; if (feed_names_.find(name) == feed_names_.end()) { LOG(ERROR) << "feed names from program do not have name: [" << name << "] from specified input"; } idx = feed_names_[name]; } else { idx = boost::get(feeds_[i]->GetAttr("col")); } framework::SetFeedVariable(scope, *input, "feed", idx); } return true; } template void AnalysisPredictor::GetFetchOne(const framework::LoDTensor &fetch, PaddleTensor *output) { // set shape. auto shape = framework::vectorize(fetch.dims()); output->shape.assign(shape.begin(), shape.end()); // set data. const T *data = fetch.data(); int num_elems = inference::VecReduceToInt(shape); output->data.Resize(num_elems * sizeof(T)); // The fetched tensor output by fetch op, should always in CPU memory, so just // copy. memcpy(output->data.data(), data, num_elems * sizeof(T)); // set lod output->lod.clear(); for (auto &level : fetch.lod()) { output->lod.emplace_back(level.begin(), level.end()); } } bool AnalysisPredictor::GetFetch(std::vector *outputs, framework::Scope *scope) { VLOG(3) << "Predictor::get_fetch"; outputs->resize(fetches_.size()); for (size_t i = 0; i < fetches_.size(); ++i) { int idx = boost::get(fetches_[i]->GetAttr("col")); PADDLE_ENFORCE((size_t)idx == i); framework::LoDTensor &fetch = framework::GetFetchVariable(*scope, "fetch", idx); auto type = fetch.type(); auto output = &(outputs->at(i)); output->name = fetches_[idx]->Input("X")[0]; if (type == framework::proto::VarType::FP32) { GetFetchOne(fetch, output); output->dtype = PaddleDType::FLOAT32; } else if (type == framework::proto::VarType::INT64) { GetFetchOne(fetch, output); output->dtype = PaddleDType::INT64; } else if (type == framework::proto::VarType::INT32) { GetFetchOne(fetch, output); output->dtype = PaddleDType::INT32; } else { LOG(ERROR) << "unknown type, only support float32, int64 and int32 now."; } } return true; } void AnalysisPredictor::PrepareArgument() { argument_.SetUseGPU(config_.use_gpu()); argument_.SetUseFcPadding(config_.use_fc_padding()); argument_.SetGPUDeviceId(config_.gpu_device_id()); argument_.SetEnableAnalysisOptim(config_.enable_ir_optim_); argument_.SetEnableMemoryOptim(config_.enable_memory_optim()); argument_.SetModelFromMemory(config_.model_from_memory_); // Analyze inference_program argument_.SetPredictorID(predictor_id_); argument_.SetOptimCacheDir(config_.opt_cache_dir_); if (!config_.model_dir().empty()) { argument_.SetModelDir(config_.model_dir()); } else { PADDLE_ENFORCE( !config_.params_file().empty(), "Either model_dir or (param_file, prog_file) should be set."); PADDLE_ENFORCE(!config_.prog_file().empty()); std::string dir = inference::analysis::GetDirRoot(config_.prog_file()); argument_.SetModelProgramPath(config_.prog_file()); argument_.SetModelParamsPath(config_.params_file()); } if (config_.use_gpu() && config_.tensorrt_engine_enabled()) { LOG(INFO) << "TensorRT subgraph engine is enabled"; argument_.SetUseTensorRT(true); argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_); argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_); argument_.SetTensorRtMinSubgraphSize(config_.tensorrt_min_subgraph_size_); argument_.SetTensorRtPrecisionMode(config_.tensorrt_precision_mode_); argument_.SetTensorRtUseStaticEngine(config_.trt_use_static_engine_); argument_.SetTensorRtUseCalibMode(config_.trt_use_calib_mode_); argument_.SetMinInputShape(config_.min_input_shape_); argument_.SetMaxInputShape(config_.max_input_shape_); argument_.SetOptimInputShape(config_.optim_input_shape_); argument_.SetCloseTrtPluginFp16(config_.disable_trt_plugin_fp16_); } if (config_.lite_engine_enabled()) { argument_.SetLitePrecisionMode(config_.lite_precision_mode_); argument_.SetLitePassesFilter(config_.lite_passes_filter_); argument_.SetLiteOpsFilter(config_.lite_ops_filter_); LOG(INFO) << "Lite subgraph engine is enabled"; } if (config_.use_mkldnn_) { LOG(INFO) << "MKLDNN is enabled"; argument_.SetMKLDNNEnabledOpTypes(config_.mkldnn_enabled_op_types_); } #ifdef PADDLE_WITH_MKLDNN if (config_.mkldnn_quantizer_enabled()) { LOG(INFO) << "Quantization is enabled"; argument_.SetQuantizeEnabledOpTypes( config_.mkldnn_quantizer_config()->enabled_op_types()); argument_.SetQuantizeExcludedOpIds( config_.mkldnn_quantizer_config()->excluded_op_ids()); } #endif auto passes = config_.pass_builder()->AllPasses(); if (!config_.ir_optim()) { passes.clear(); LOG(INFO) << "ir_optim is turned off, no IR pass will be executed"; } argument_.SetDisableLogs(config_.glog_info_disabled()); argument_.SetIrAnalysisPasses(passes); argument_.SetAnalysisPasses(config_.pass_builder()->AnalysisPasses()); argument_.SetScopeNotOwned(scope_.get()); } // NOTE All the members in AnalysisConfig should be copied to Argument. void AnalysisPredictor::OptimizeInferenceProgram() { PrepareArgument(); Analyzer().Run(&argument_); PADDLE_ENFORCE(argument_.scope_valid()); VLOG(5) << "to prepare executor"; ARGUMENT_CHECK_FIELD((&argument_), ir_analyzed_program); inference_program_.reset( new framework::ProgramDesc(argument_.ir_analyzed_program())); // The config and argument take a lot of storage, // when the predictor settings are complete, we release these stores. argument_.PartiallyRelease(); config_.PartiallyRelease(); LOG(INFO) << "======= optimize end ======="; } template <> std::unique_ptr CreatePaddlePredictor< AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) { if (config.glog_info_disabled()) { FLAGS_logtostderr = 1; FLAGS_minloglevel = 2; // GLOG_ERROR } VLOG(3) << "create AnalysisConfig"; PADDLE_ENFORCE(config.is_valid(), "Note: Each config can only be used for one predictor."); if (config.use_gpu()) { // 1. GPU memory PADDLE_ENFORCE_GE(config.memory_pool_init_size_mb(), 0.f); PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d", config.gpu_device_id()); std::vector flags; float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool(); if (fraction_of_gpu_memory > 0.95f) { LOG(ERROR) << "Allocate too much memory for the GPU memory pool, assigned " << config.memory_pool_init_size_mb() << " MB"; LOG(ERROR) << "Try to shink the value by setting AnalysisConfig::EnableGpu(...)"; } if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) { flags.push_back("dummy"); std::string flag = "--fraction_of_gpu_memory_to_use=" + std::to_string(fraction_of_gpu_memory); flags.push_back(flag); flags.push_back("--cudnn_deterministic=True"); VLOG(3) << "set flag: " << flag; framework::InitGflags(flags); } } std::unique_ptr predictor(new AnalysisPredictor(config)); // Each config can only be used for one predictor. config.SetInValid(); auto predictor_p = dynamic_cast(predictor.get()); if (!predictor_p->Init(nullptr)) { return nullptr; } if (config.mkldnn_quantizer_enabled() && !predictor_p->MkldnnQuantize()) { return nullptr; } return predictor; } bool AnalysisPredictor::MkldnnQuantize() { #if PADDLE_WITH_MKLDNN if (!mkldnn_quantizer_) mkldnn_quantizer_ = new AnalysisPredictor::MkldnnQuantizer( *this, config_.mkldnn_quantizer_config()); return mkldnn_quantizer_->Quantize(); #else LOG(ERROR) << "Please compile with MKLDNN first to use MkldnnQuantizer"; return false; #endif } void AnalysisPredictor::PrepareFeedFetch() { PADDLE_ENFORCE_NOT_NULL(sub_scope_); CreateFeedFetchVar(sub_scope_); for (auto *op : inference_program_->Block(0).AllOps()) { if (op->Type() == "feed") { int idx = boost::get(op->GetAttr("col")); if (feeds_.size() <= static_cast(idx)) { feeds_.resize(idx + 1); } feeds_[idx] = op; feed_names_[op->Output("Out")[0]] = idx; idx2feeds_[idx] = op->Output("Out")[0]; } else if (op->Type() == "fetch") { int idx = boost::get(op->GetAttr("col")); if (fetches_.size() <= static_cast(idx)) { fetches_.resize(idx + 1); } fetches_[idx] = op; idx2fetches_[idx] = op->Input("X")[0]; } } } void AnalysisPredictor::CreateFeedFetchVar(framework::Scope *scope) { PADDLE_ENFORCE_NOT_NULL(scope); auto *var = scope->Var("feed"); var->GetMutable(); var = scope->Var("fetch"); var->GetMutable(); } std::vector AnalysisPredictor::GetInputNames() { std::vector input_names; for (auto &item : idx2feeds_) { input_names.push_back(item.second); } return input_names; } std::map> AnalysisPredictor::GetInputTensorShape() { std::map> input_shapes; std::vector names = GetInputNames(); for (std::string name : names) { auto *var = inference_program_->Block(0).FindVar(name); PADDLE_ENFORCE_NOT_NULL(var, "input %s does not exist.", name); input_shapes[name] = var->GetShape(); } return input_shapes; } std::vector AnalysisPredictor::GetOutputNames() { std::vector output_names; for (auto &item : idx2fetches_) { output_names.push_back(item.second); } return output_names; } std::unique_ptr AnalysisPredictor::GetInputTensor( const std::string &name) { PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name); std::unique_ptr res( new ZeroCopyTensor(static_cast(executor_->scope()))); res->input_or_output_ = true; res->SetName(name); if (platform::is_cpu_place(place_)) { res->SetPlace(PaddlePlace::kCPU); } else { auto gpu_place = boost::get(place_); res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId()); } return res; } std::unique_ptr AnalysisPredictor::GetOutputTensor( const std::string &name) { PADDLE_ENFORCE(executor_->scope()->FindVar(name), "no name called %s", name); std::unique_ptr res( new ZeroCopyTensor(static_cast(executor_->scope()))); res->input_or_output_ = false; res->SetName(name); if (platform::is_cpu_place(place_)) { res->SetPlace(PaddlePlace::kCPU); } else { auto gpu_place = boost::get(place_); res->SetPlace(PaddlePlace::kGPU, gpu_place.GetDeviceId()); } return res; } bool AnalysisPredictor::ZeroCopyRun() { paddle::platform::SetNumThreads(config_.cpu_math_library_num_threads()); executor_->Run(); // Fix TensorArray reuse not cleaned bug. tensor_array_batch_cleaner_.CollectTensorArrays(sub_scope_); tensor_array_batch_cleaner_.ResetTensorArray(); // recover the cpu_math_library_num_threads to 1, in order to avoid thread // conflict when integrating it into deployment service. paddle::platform::SetNumThreads(1); #if defined(PADDLE_WITH_MKLML) && defined(_LINUX) // Frees unused memory allocated by the IntelĀ® MKL Memory Allocator to // avoid memory leak. See: // https://software.intel.com/en-us/mkl-developer-reference-c-mkl-free-buffers platform::dynload::MKL_Free_Buffers(); // We don't support windows since MKL_Free_Buffers is not in // mklml_win_2019.0.1.20181227.zip. We will upgrade mklml_win version later. #endif return true; } bool AnalysisPredictor::LoadProgramDesc() { // Initialize the inference program std::string filename; if (!config_.model_dir().empty()) { filename = config_.model_dir() + "/__model__"; } else if (!config_.prog_file().empty() && !config_.params_file().empty()) { // All parameters are saved in a single file. // The file names should be consistent with that used // in Python API `fluid.io.save_inference_model`. filename = config_.prog_file(); } else { if (config_.model_dir().empty() && config_.prog_file().empty()) { LOG(ERROR) << "Either model_dir or (prog_file, param_file) should be set."; return false; } LOG(ERROR) << string::Sprintf( "not valid model path '%s' or program path '%s'.", config_.model_dir(), config_.params_file()); return false; } // Create ProgramDesc framework::proto::ProgramDesc proto; if (!config_.model_from_memory()) { std::string pb_content; // Read binary std::ifstream fin(filename, std::ios::in | std::ios::binary); PADDLE_ENFORCE(static_cast(fin.is_open()), "Cannot open file %s", filename); fin.seekg(0, std::ios::end); pb_content.resize(fin.tellg()); fin.seekg(0, std::ios::beg); fin.read(&(pb_content.at(0)), pb_content.size()); fin.close(); proto.ParseFromString(pb_content); } else { proto.ParseFromString(config_.prog_file()); } inference_program_.reset(new framework::ProgramDesc(proto)); return true; } bool AnalysisPredictor::LoadParameters() { PADDLE_ENFORCE_NOT_NULL(inference_program_.get(), "The inference program should be loaded first."); const auto &global_block = inference_program_->MutableBlock(0); // create a temporary program to load parameters. std::unique_ptr load_program( new framework::ProgramDesc()); framework::BlockDesc *load_block = load_program->MutableBlock(0); std::vector params; for (auto *var : global_block->AllVars()) { if (IsPersistable(var)) { VLOG(3) << "persistable variable's name: " << var->Name(); framework::VarDesc *new_var = load_block->Var(var->Name()); new_var->SetShape(var->GetShape()); new_var->SetDataType(var->GetDataType()); new_var->SetType(var->GetType()); new_var->SetLoDLevel(var->GetLoDLevel()); new_var->SetPersistable(true); if (!config_.params_file().empty()) { params.push_back(new_var->Name()); } else { // append_op framework::OpDesc *op = load_block->AppendOp(); op->SetType("load"); op->SetOutput("Out", {new_var->Name()}); op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()}); op->CheckAttrs(); } } } if (!config_.params_file().empty()) { // sort paramlist to have consistent ordering std::sort(params.begin(), params.end()); // append just the load_combine op framework::OpDesc *op = load_block->AppendOp(); op->SetType("load_combine"); op->SetOutput("Out", params); op->SetAttr("file_path", {config_.params_file()}); op->CheckAttrs(); } // Use NaiveExecutor to Load parameters. framework::NaiveExecutor e(place_); e.Prepare(scope_.get(), *load_program, 0, false); e.Run(); VLOG(3) << "get " << scope_->LocalVarNames().size() << " vars after load"; return true; } #if PADDLE_WITH_TENSORRT bool AnalysisPredictor::SaveTrtCalibToDisk() { PADDLE_ENFORCE(config_.tensorrt_engine_enabled(), "This func can be invoked only in trt mode"); auto &block = inference_program_->Block(0); for (auto &op_desc : block.AllOps()) { if (op_desc->Type() == "tensorrt_engine") { std::string engine_name = boost::get(op_desc->GetAttr("engine_key")); if (!Singleton::Global().Has(engine_name)) { LOG(ERROR) << "You should run the predictor(with trt) on the real data " "to generate calibration info"; return false; } TRTCalibratorEngine *calib_engine = Singleton::Global().Get(engine_name); LOG(INFO) << "Wait for calib threads done."; calib_engine->calib_->waitAndSetDone(); LOG(INFO) << "Generating TRT Calibration table data, this may cost a lot " "of time..."; calib_engine->thr_->join(); std::string calibration_table_data = calib_engine->calib_->getCalibrationTableAsString(); if (calibration_table_data.empty()) { LOG(ERROR) << "the calibration table is empty."; return false; } std::string model_opt_cache_dir = argument_.Has("model_dir") ? argument_.model_dir() : inference::analysis::GetDirRoot(argument_.model_program_path()); std::string calibration_table_data_path = inference::analysis::GetTrtCalibPath( inference::analysis::GetOrCreateModelOptCacheDir( model_opt_cache_dir), engine_name); std::ofstream ofile(calibration_table_data_path, std::ios::out); LOG(INFO) << "Write Paddle-TRT INT8 calibration table data to file " << calibration_table_data_path; ofile << calibration_table_data; ofile.close(); } } // Free all calibrator resources. Singleton::Global().DeleteALL(); return true; } #endif AnalysisPredictor::~AnalysisPredictor() { #if PADDLE_WITH_TENSORRT if (config_.tensorrt_engine_enabled() && config_.tensorrt_precision_mode_ == AnalysisConfig::Precision::kInt8 && Singleton::Global().Has()) { SaveTrtCalibToDisk(); } #endif if (config_.with_profile_) { platform::DisableProfiler(platform::EventSortingKey::kTotal, "./profile.log"); } if (sub_scope_) { scope_->DeleteScope(sub_scope_); } #if PADDLE_WITH_MKLDNN if (mkldnn_quantizer_) { delete mkldnn_quantizer_; mkldnn_quantizer_ = nullptr; } #endif } std::unique_ptr AnalysisPredictor::Clone() { std::lock_guard lk(clone_mutex_); auto *x = new AnalysisPredictor(config_); x->Init(scope_, inference_program_); return std::unique_ptr(x); } std::string AnalysisPredictor::GetSerializedProgram() const { return inference_program_->Proto()->SerializeAsString(); } bool AnalysisPredictor::CheckOperatorCompatible() { if (!inference_program_) { LOG(FATAL) << "Inference program version check failed because the program " "does not exist."; return false; } bool res = true; op_compatible_map_.ReadFromProto(*inference_program_->OpCompatibleMap()); const auto &version = framework::DumpVersion(framework::kCurProgramVersion); LOG(INFO) << "MODEL VERSION: " << framework::DumpVersion(inference_program_->Version()); LOG(INFO) << "PREDICTOR VERSION: " << version; std::set op_types; for (size_t i = 0; i < inference_program_->Size(); ++i) { const auto &block = inference_program_->Block(i); for (const auto *op : block.AllOps()) { op_types.insert(op->Type()); } } for (const auto type : op_types) { auto compatible_type = op_compatible_map_.IsRequireMiniVersion(type, version); if (compatible_type != framework::OpCompatibleType::compatible) { if (!framework::kCurProgramVersion) { LOG(WARNING) << " - Version incompatible (" << static_cast(compatible_type) << ") " << type; } res = false; } } return res; } // Add SaveOptimModel void AnalysisPredictor::SaveOptimModel(const std::string &dir) { // save model std::string model_name = dir + "/model"; std::ofstream outfile; outfile.open(model_name, std::ios::out | std::ios::binary); std::string inference_prog_desc = GetSerializedProgram(); outfile << inference_prog_desc; // save params framework::ProgramDesc save_program; auto *save_block = save_program.MutableBlock(0); const framework::ProgramDesc &main_program = program(); const framework::BlockDesc &global_block = main_program.Block(0); std::vector save_var_list; for (framework::VarDesc *var : global_block.AllVars()) { if (IsPersistable(var)) { framework::VarDesc *new_var = save_block->Var(var->Name()); new_var->SetShape(var->GetShape()); new_var->SetDataType(var->GetDataType()); new_var->SetType(var->GetType()); new_var->SetLoDLevel(var->GetLoDLevel()); new_var->SetPersistable(true); save_var_list.push_back(new_var->Name()); } } std::sort(save_var_list.begin(), save_var_list.end()); auto *op = save_block->AppendOp(); op->SetType("save_combine"); op->SetInput("X", save_var_list); op->SetAttr("file_path", dir + "/params"); op->CheckAttrs(); platform::CPUPlace place; framework::Executor exe(place); exe.Run(save_program, scope(), 0, true, true); } template <> std::unique_ptr CreatePaddlePredictor( const AnalysisConfig &config) { return CreatePaddlePredictor( config); } } // namespace paddle #if PADDLE_WITH_TENSORRT USE_TRT_CONVERTER(elementwise_add_weight); USE_TRT_CONVERTER(elementwise_add_tensor); USE_TRT_CONVERTER(elementwise_sub_tensor); USE_TRT_CONVERTER(elementwise_div_tensor); USE_TRT_CONVERTER(elementwise_mul_tensor); USE_TRT_CONVERTER(elementwise_max_tensor); USE_TRT_CONVERTER(elementwise_min_tensor); USE_TRT_CONVERTER(elementwise_pow_tensor); USE_TRT_CONVERTER(mul); USE_TRT_CONVERTER(conv2d); USE_TRT_CONVERTER(relu); USE_TRT_CONVERTER(sigmoid); USE_TRT_CONVERTER(tanh); USE_TRT_CONVERTER(fc); USE_TRT_CONVERTER(pool2d); USE_TRT_CONVERTER(softmax); USE_TRT_CONVERTER(batch_norm); USE_TRT_CONVERTER(concat); USE_TRT_CONVERTER(dropout); USE_TRT_CONVERTER(pad); USE_TRT_CONVERTER(split); USE_TRT_CONVERTER(prelu); USE_TRT_CONVERTER(conv2d_transpose); USE_TRT_CONVERTER(leaky_relu); USE_TRT_CONVERTER(shuffle_channel); USE_TRT_CONVERTER(swish); USE_TRT_CONVERTER(instance_norm); USE_TRT_CONVERTER(layer_norm); USE_TRT_CONVERTER(gelu); USE_TRT_CONVERTER(multihead_matmul); USE_TRT_CONVERTER(fused_embedding_eltwise_layernorm); USE_TRT_CONVERTER(skip_layernorm); USE_TRT_CONVERTER(scale); #endif