/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/math/concat.h" #include "paddle/fluid/operators/strided_memcpy.h" namespace paddle { namespace operators { template class ConcatKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto ins = ctx.MultiInput("X"); framework::Tensor* out = ctx.Output("Out"); int64_t axis = static_cast(ctx.Attr("axis")); auto place = ctx.GetPlace(); out->mutable_data(place); std::vector inputs(ins.size()); for (size_t j = 0; j < ins.size(); ++j) { inputs[j] = *ins[j]; } auto& dev_ctx = ctx.template device_context(); paddle::operators::math::ConcatFunctor concat_functor; concat_functor(dev_ctx, inputs, static_cast(axis), out); } }; template class ConcatGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { auto* in = ctx.Input(framework::GradVarName("Out")); auto outs = ctx.MultiOutput(framework::GradVarName("X")); int64_t axis = static_cast(ctx.Attr("axis")); std::vector outputs(outs.size()); for (size_t j = 0; j < outs.size(); ++j) { outs[j]->mutable_data(ctx.GetPlace()); outputs[j] = *outs[j]; } auto& dev_ctx = ctx.template device_context(); paddle::operators::math::ConcatGradFunctor concat_grad_functor; concat_grad_functor(dev_ctx, *in, static_cast(axis), outputs); } }; } // namespace operators } // namespace paddle