未验证 提交 fea7f0de 编写于 作者: Z Zeng Jinle 提交者: GitHub

Merge pull request #15667 from sneaxiy/fix_decorator_signature

Fix decorator signature error
...@@ -8,13 +8,13 @@ paddle.fluid.Program.parse_from_string ArgSpec(args=['binary_str'], varargs=None ...@@ -8,13 +8,13 @@ paddle.fluid.Program.parse_from_string ArgSpec(args=['binary_str'], varargs=None
paddle.fluid.Program.to_string ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,)) paddle.fluid.Program.to_string ArgSpec(args=['self', 'throw_on_error', 'with_details'], varargs=None, keywords=None, defaults=(False,))
paddle.fluid.default_startup_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None) paddle.fluid.default_startup_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.default_main_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None) paddle.fluid.default_main_program ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.program_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.program_guard ArgSpec(args=['main_program', 'startup_program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.name_scope ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.name_scope ArgSpec(args=['prefix'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.Executor.__init__ ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None) paddle.fluid.Executor.__init__ ArgSpec(args=['self', 'place'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.close ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.Executor.close ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Executor.run ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False)) paddle.fluid.Executor.run ArgSpec(args=['self', 'program', 'feed', 'fetch_list', 'feed_var_name', 'fetch_var_name', 'scope', 'return_numpy', 'use_program_cache'], varargs=None, keywords=None, defaults=(None, None, None, 'feed', 'fetch', None, True, False))
paddle.fluid.global_scope ArgSpec(args=[], varargs=None, keywords=None, defaults=None) paddle.fluid.global_scope ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.scope_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.scope_guard ArgSpec(args=['scope'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.DistributeTranspiler.__init__ ArgSpec(args=['self', 'config'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None) paddle.fluid.DistributeTranspiler.get_pserver_program ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
paddle.fluid.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None) paddle.fluid.DistributeTranspiler.get_pserver_programs ArgSpec(args=['self', 'endpoint'], varargs=None, keywords=None, defaults=None)
...@@ -66,7 +66,7 @@ paddle.fluid.initializer.XavierInitializer.__init__ ArgSpec(args=['self', 'unifo ...@@ -66,7 +66,7 @@ paddle.fluid.initializer.XavierInitializer.__init__ ArgSpec(args=['self', 'unifo
paddle.fluid.initializer.BilinearInitializer.__init__ ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.initializer.BilinearInitializer.__init__ ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.initializer.MSRAInitializer.__init__ ArgSpec(args=['self', 'uniform', 'fan_in', 'seed'], varargs=None, keywords=None, defaults=(True, None, 0)) paddle.fluid.initializer.MSRAInitializer.__init__ ArgSpec(args=['self', 'uniform', 'fan_in', 'seed'], varargs=None, keywords=None, defaults=(True, None, 0))
paddle.fluid.initializer.force_init_on_cpu ArgSpec(args=[], varargs=None, keywords=None, defaults=None) paddle.fluid.initializer.force_init_on_cpu ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.initializer.init_on_cpu ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.initializer.init_on_cpu ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.initializer.NumpyArrayInitializer.__init__ ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None) paddle.fluid.initializer.NumpyArrayInitializer.__init__ ArgSpec(args=['self', 'value'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.fc ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None)) paddle.fluid.layers.fc ArgSpec(args=['input', 'size', 'num_flatten_dims', 'param_attr', 'bias_attr', 'act', 'is_test', 'name'], varargs=None, keywords=None, defaults=(1, None, None, None, False, None))
paddle.fluid.layers.embedding ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32')) paddle.fluid.layers.embedding ArgSpec(args=['input', 'size', 'is_sparse', 'is_distributed', 'padding_idx', 'param_attr', 'dtype'], varargs=None, keywords=None, defaults=(False, False, None, None, 'float32'))
...@@ -229,7 +229,7 @@ paddle.fluid.layers.random_data_generator ArgSpec(args=['low', 'high', 'shapes', ...@@ -229,7 +229,7 @@ paddle.fluid.layers.random_data_generator ArgSpec(args=['low', 'high', 'shapes',
paddle.fluid.layers.py_reader ArgSpec(args=['capacity', 'shapes', 'dtypes', 'lod_levels', 'name', 'use_double_buffer'], varargs=None, keywords=None, defaults=(None, None, True)) paddle.fluid.layers.py_reader ArgSpec(args=['capacity', 'shapes', 'dtypes', 'lod_levels', 'name', 'use_double_buffer'], varargs=None, keywords=None, defaults=(None, None, True))
paddle.fluid.layers.create_py_reader_by_data ArgSpec(args=['capacity', 'feed_list', 'name', 'use_double_buffer'], varargs=None, keywords=None, defaults=(None, True)) paddle.fluid.layers.create_py_reader_by_data ArgSpec(args=['capacity', 'feed_list', 'name', 'use_double_buffer'], varargs=None, keywords=None, defaults=(None, True))
paddle.fluid.layers.Preprocessor.__init__ ArgSpec(args=['self', 'reader', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.Preprocessor.__init__ ArgSpec(args=['self', 'reader', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.Preprocessor.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.layers.Preprocessor.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.Preprocessor.inputs ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.Preprocessor.inputs ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.Preprocessor.outputs ArgSpec(args=['self'], varargs='outs', keywords=None, defaults=None) paddle.fluid.layers.Preprocessor.outputs ArgSpec(args=['self'], varargs='outs', keywords=None, defaults=None)
paddle.fluid.layers.load ArgSpec(args=['out', 'file_path', 'load_as_fp16'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.load ArgSpec(args=['out', 'file_path', 'load_as_fp16'], varargs=None, keywords=None, defaults=(None,))
...@@ -270,7 +270,7 @@ paddle.fluid.layers.IfElse.input ArgSpec(args=['self', 'x'], varargs=None, keywo ...@@ -270,7 +270,7 @@ paddle.fluid.layers.IfElse.input ArgSpec(args=['self', 'x'], varargs=None, keywo
paddle.fluid.layers.IfElse.output ArgSpec(args=['self'], varargs='outs', keywords=None, defaults=None) paddle.fluid.layers.IfElse.output ArgSpec(args=['self'], varargs='outs', keywords=None, defaults=None)
paddle.fluid.layers.IfElse.true_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.IfElse.true_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.DynamicRNN.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.layers.DynamicRNN.__init__ ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.layers.DynamicRNN.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.layers.DynamicRNN.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.layers.DynamicRNN.memory ArgSpec(args=['self', 'init', 'shape', 'value', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, False, 'float32')) paddle.fluid.layers.DynamicRNN.memory ArgSpec(args=['self', 'init', 'shape', 'value', 'need_reorder', 'dtype'], varargs=None, keywords=None, defaults=(None, None, 0.0, False, 'float32'))
paddle.fluid.layers.DynamicRNN.output ArgSpec(args=['self'], varargs='outputs', keywords=None, defaults=None) paddle.fluid.layers.DynamicRNN.output ArgSpec(args=['self'], varargs='outputs', keywords=None, defaults=None)
paddle.fluid.layers.DynamicRNN.static_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None) paddle.fluid.layers.DynamicRNN.static_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None)
...@@ -346,12 +346,12 @@ paddle.fluid.contrib.StateCell.set_state ArgSpec(args=['self', 'state_name', 'st ...@@ -346,12 +346,12 @@ paddle.fluid.contrib.StateCell.set_state ArgSpec(args=['self', 'state_name', 'st
paddle.fluid.contrib.StateCell.state_updater ArgSpec(args=['self', 'updater'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.StateCell.state_updater ArgSpec(args=['self', 'updater'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.StateCell.update_states ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.StateCell.update_states ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.TrainingDecoder.__init__ ArgSpec(args=['self', 'state_cell', 'name'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.contrib.TrainingDecoder.__init__ ArgSpec(args=['self', 'state_cell', 'name'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.contrib.TrainingDecoder.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.contrib.TrainingDecoder.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.TrainingDecoder.output ArgSpec(args=['self'], varargs='outputs', keywords=None, defaults=None) paddle.fluid.contrib.TrainingDecoder.output ArgSpec(args=['self'], varargs='outputs', keywords=None, defaults=None)
paddle.fluid.contrib.TrainingDecoder.static_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.TrainingDecoder.static_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.TrainingDecoder.step_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.TrainingDecoder.step_input ArgSpec(args=['self', 'x'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.BeamSearchDecoder.__init__ ArgSpec(args=['self', 'state_cell', 'init_ids', 'init_scores', 'target_dict_dim', 'word_dim', 'input_var_dict', 'topk_size', 'sparse_emb', 'max_len', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=({}, 50, True, 100, 1, 1, None)) paddle.fluid.contrib.BeamSearchDecoder.__init__ ArgSpec(args=['self', 'state_cell', 'init_ids', 'init_scores', 'target_dict_dim', 'word_dim', 'input_var_dict', 'topk_size', 'sparse_emb', 'max_len', 'beam_size', 'end_id', 'name'], varargs=None, keywords=None, defaults=({}, 50, True, 100, 1, 1, None))
paddle.fluid.contrib.BeamSearchDecoder.block ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.contrib.BeamSearchDecoder.block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.BeamSearchDecoder.decode ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.BeamSearchDecoder.decode ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.BeamSearchDecoder.early_stop ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None) paddle.fluid.contrib.BeamSearchDecoder.early_stop ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.contrib.BeamSearchDecoder.read_array ArgSpec(args=['self', 'init', 'is_ids', 'is_scores'], varargs=None, keywords=None, defaults=(False, False)) paddle.fluid.contrib.BeamSearchDecoder.read_array ArgSpec(args=['self', 'init', 'is_ids', 'is_scores'], varargs=None, keywords=None, defaults=(False, False))
...@@ -456,7 +456,7 @@ paddle.fluid.optimizer.AdadeltaOptimizer.apply_gradients ArgSpec(args=['self', ' ...@@ -456,7 +456,7 @@ paddle.fluid.optimizer.AdadeltaOptimizer.apply_gradients ArgSpec(args=['self', '
paddle.fluid.optimizer.AdadeltaOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None)) paddle.fluid.optimizer.AdadeltaOptimizer.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.AdadeltaOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) paddle.fluid.optimizer.AdadeltaOptimizer.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
paddle.fluid.optimizer.ModelAverage.__init__ ArgSpec(args=['self', 'average_window_rate', 'min_average_window', 'max_average_window', 'regularization', 'name'], varargs=None, keywords=None, defaults=(10000, 10000, None, None)) paddle.fluid.optimizer.ModelAverage.__init__ ArgSpec(args=['self', 'average_window_rate', 'min_average_window', 'max_average_window', 'regularization', 'name'], varargs=None, keywords=None, defaults=(10000, 10000, None, None))
paddle.fluid.optimizer.ModelAverage.apply ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.optimizer.ModelAverage.apply ArgSpec(args=['self', 'executor', 'need_restore'], varargs=None, keywords=None, defaults=(True,))
paddle.fluid.optimizer.ModelAverage.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None) paddle.fluid.optimizer.ModelAverage.apply_gradients ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None)
paddle.fluid.optimizer.ModelAverage.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None)) paddle.fluid.optimizer.ModelAverage.backward ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.optimizer.ModelAverage.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)) paddle.fluid.optimizer.ModelAverage.minimize ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None))
...@@ -491,14 +491,14 @@ paddle.fluid.clip.ErrorClipByValue.__init__ ArgSpec(args=['self', 'max', 'min'], ...@@ -491,14 +491,14 @@ paddle.fluid.clip.ErrorClipByValue.__init__ ArgSpec(args=['self', 'max', 'min'],
paddle.fluid.clip.GradientClipByValue.__init__ ArgSpec(args=['self', 'max', 'min'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.clip.GradientClipByValue.__init__ ArgSpec(args=['self', 'max', 'min'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.clip.GradientClipByNorm.__init__ ArgSpec(args=['self', 'clip_norm'], varargs=None, keywords=None, defaults=None) paddle.fluid.clip.GradientClipByNorm.__init__ ArgSpec(args=['self', 'clip_norm'], varargs=None, keywords=None, defaults=None)
paddle.fluid.clip.GradientClipByGlobalNorm.__init__ ArgSpec(args=['self', 'clip_norm', 'group_name'], varargs=None, keywords=None, defaults=('default_group',)) paddle.fluid.clip.GradientClipByGlobalNorm.__init__ ArgSpec(args=['self', 'clip_norm', 'group_name'], varargs=None, keywords=None, defaults=('default_group',))
paddle.fluid.profiler.cuda_profiler ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.profiler.cuda_profiler ArgSpec(args=['output_file', 'output_mode', 'config'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.profiler.reset_profiler ArgSpec(args=[], varargs=None, keywords=None, defaults=None) paddle.fluid.profiler.reset_profiler ArgSpec(args=[], varargs=None, keywords=None, defaults=None)
paddle.fluid.profiler.profiler ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.profiler.profiler ArgSpec(args=['state', 'sorted_key', 'profile_path'], varargs=None, keywords=None, defaults=(None, '/tmp/profile'))
paddle.fluid.profiler.start_profiler ArgSpec(args=['state'], varargs=None, keywords=None, defaults=None) paddle.fluid.profiler.start_profiler ArgSpec(args=['state'], varargs=None, keywords=None, defaults=None)
paddle.fluid.profiler.stop_profiler ArgSpec(args=['sorted_key', 'profile_path'], varargs=None, keywords=None, defaults=(None, '/tmp/profile')) paddle.fluid.profiler.stop_profiler ArgSpec(args=['sorted_key', 'profile_path'], varargs=None, keywords=None, defaults=(None, '/tmp/profile'))
paddle.fluid.unique_name.generate ArgSpec(args=['key'], varargs=None, keywords=None, defaults=None) paddle.fluid.unique_name.generate ArgSpec(args=['key'], varargs=None, keywords=None, defaults=None)
paddle.fluid.unique_name.switch ArgSpec(args=['new_generator'], varargs=None, keywords=None, defaults=(None,)) paddle.fluid.unique_name.switch ArgSpec(args=['new_generator'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.unique_name.guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None) paddle.fluid.unique_name.guard ArgSpec(args=['new_generator'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.recordio_writer.convert_reader_to_recordio_file ArgSpec(args=['filename', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None)) paddle.fluid.recordio_writer.convert_reader_to_recordio_file ArgSpec(args=['filename', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None))
paddle.fluid.recordio_writer.convert_reader_to_recordio_files ArgSpec(args=['filename', 'batch_per_file', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None)) paddle.fluid.recordio_writer.convert_reader_to_recordio_files ArgSpec(args=['filename', 'batch_per_file', 'reader_creator', 'feeder', 'compressor', 'max_num_records', 'feed_order'], varargs=None, keywords=None, defaults=(Compressor.Snappy, 1000, None))
paddle.fluid.Scope Scope() -> paddle.fluid.core._Scope paddle.fluid.Scope Scope() -> paddle.fluid.core._Scope
......
...@@ -22,7 +22,7 @@ This API is still under active development and may change drastically. ...@@ -22,7 +22,7 @@ This API is still under active development and may change drastically.
from __future__ import print_function from __future__ import print_function
import contextlib from ...wrapped_decorator import signature_safe_contextmanager
import numpy as np import numpy as np
import six import six
...@@ -419,7 +419,7 @@ class TrainingDecoder(object): ...@@ -419,7 +419,7 @@ class TrainingDecoder(object):
self._state_cell = state_cell self._state_cell = state_cell
self._state_cell._enter_decoder(self) self._state_cell._enter_decoder(self)
@contextlib.contextmanager @signature_safe_contextmanager
def block(self): def block(self):
""" """
Define the behavior of the decoder for each RNN time step. Define the behavior of the decoder for each RNN time step.
...@@ -613,7 +613,7 @@ class BeamSearchDecoder(object): ...@@ -613,7 +613,7 @@ class BeamSearchDecoder(object):
self._word_dim = word_dim self._word_dim = word_dim
self._input_var_dict = input_var_dict self._input_var_dict = input_var_dict
@contextlib.contextmanager @signature_safe_contextmanager
def block(self): def block(self):
""" """
Define the behavior of the decoder for each RNN time step. Define the behavior of the decoder for each RNN time step.
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
from __future__ import print_function from __future__ import print_function
import contextlib from ..wrapped_decorator import signature_safe_contextmanager
from .. import core from .. import core
...@@ -105,7 +105,7 @@ class Inferencer(object): ...@@ -105,7 +105,7 @@ class Inferencer(object):
return results return results
@contextlib.contextmanager @signature_safe_contextmanager
def _prog_and_scope_guard(self): def _prog_and_scope_guard(self):
with framework.program_guard(main_program=self.inference_program): with framework.program_guard(main_program=self.inference_program):
with executor.scope_guard(self.scope): with executor.scope_guard(self.scope):
......
...@@ -14,7 +14,7 @@ ...@@ -14,7 +14,7 @@
from __future__ import print_function from __future__ import print_function
import contextlib from ..wrapped_decorator import signature_safe_contextmanager
import os import os
import errno import errno
import shutil import shutil
...@@ -453,7 +453,7 @@ class Trainer(object): ...@@ -453,7 +453,7 @@ class Trainer(object):
io.save_inference_model(param_path, feeded_var_names, target_vars, io.save_inference_model(param_path, feeded_var_names, target_vars,
exe) exe)
@contextlib.contextmanager @signature_safe_contextmanager
def _prog_and_scope_guard(self): def _prog_and_scope_guard(self):
with framework.program_guard( with framework.program_guard(
main_program=self.train_program, main_program=self.train_program,
......
...@@ -17,7 +17,7 @@ from __future__ import print_function ...@@ -17,7 +17,7 @@ from __future__ import print_function
import os import os
import multiprocessing import multiprocessing
import numpy as np import numpy as np
import contextlib from .wrapped_decorator import signature_safe_contextmanager
import six import six
from .framework import Program, default_main_program, Variable from .framework import Program, default_main_program, Variable
from . import core from . import core
...@@ -49,7 +49,7 @@ def _switch_scope(scope): ...@@ -49,7 +49,7 @@ def _switch_scope(scope):
return ex return ex
@contextlib.contextmanager @signature_safe_contextmanager
def scope_guard(scope): def scope_guard(scope):
""" """
Change the global/default scope instance by Python `with` statement. All Change the global/default scope instance by Python `with` statement. All
......
...@@ -16,7 +16,7 @@ from __future__ import print_function ...@@ -16,7 +16,7 @@ from __future__ import print_function
import collections import collections
from collections import defaultdict from collections import defaultdict
import contextlib from .wrapped_decorator import signature_safe_contextmanager
import os import os
import re import re
import traceback import traceback
...@@ -111,7 +111,7 @@ class NameScope(object): ...@@ -111,7 +111,7 @@ class NameScope(object):
_name_scope = NameScope() _name_scope = NameScope()
@contextlib.contextmanager @signature_safe_contextmanager
def name_scope(prefix=None): def name_scope(prefix=None):
""" """
Generate hierarchical name prefix for the operators. Generate hierarchical name prefix for the operators.
...@@ -1775,7 +1775,7 @@ class Program(object): ...@@ -1775,7 +1775,7 @@ class Program(object):
def set_op_role_var(self, var_name): def set_op_role_var(self, var_name):
self._op_role_var = [var_name] self._op_role_var = [var_name]
@contextlib.contextmanager @signature_safe_contextmanager
def _optimized_guard(self, param_and_grads): def _optimized_guard(self, param_and_grads):
""" """
A with guard to set :code:`Optimization` :code:`OpRole` and A with guard to set :code:`Optimization` :code:`OpRole` and
...@@ -1805,7 +1805,7 @@ class Program(object): ...@@ -1805,7 +1805,7 @@ class Program(object):
self._op_role_var = tmp_var self._op_role_var = tmp_var
self._current_role = tmp_role self._current_role = tmp_role
@contextlib.contextmanager @signature_safe_contextmanager
def _lr_schedule_guard(self, is_with_opt=False): def _lr_schedule_guard(self, is_with_opt=False):
""" """
A with guard to set :code:`LRSched` :code:`OpRole` and A with guard to set :code:`LRSched` :code:`OpRole` and
...@@ -2459,7 +2459,7 @@ def switch_startup_program(program): ...@@ -2459,7 +2459,7 @@ def switch_startup_program(program):
return prev_program return prev_program
@contextlib.contextmanager @signature_safe_contextmanager
def program_guard(main_program, startup_program=None): def program_guard(main_program, startup_program=None):
""" """
Change the global main program and startup program with `with` statement. Change the global main program and startup program with `with` statement.
...@@ -2524,7 +2524,7 @@ def _get_var(name, program=None): ...@@ -2524,7 +2524,7 @@ def _get_var(name, program=None):
return program.global_block().var(name) return program.global_block().var(name)
@contextlib.contextmanager @signature_safe_contextmanager
def _imperative_guard(tracer): def _imperative_guard(tracer):
global _imperative_tracer_ global _imperative_tracer_
tmp_trace = _imperative_tracer_ tmp_trace = _imperative_tracer_
...@@ -2535,7 +2535,7 @@ def _imperative_guard(tracer): ...@@ -2535,7 +2535,7 @@ def _imperative_guard(tracer):
_imperative_tracer_ = tmp_trace _imperative_tracer_ = tmp_trace
@contextlib.contextmanager @signature_safe_contextmanager
def _imperative_place_guard(place): def _imperative_place_guard(place):
global _imperative_current_expected_place_ global _imperative_current_expected_place_
tmp_place = _imperative_current_expected_place_ tmp_place = _imperative_current_expected_place_
......
...@@ -11,7 +11,7 @@ ...@@ -11,7 +11,7 @@
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and # See the License for the specific language governing permissions and
# limitations under the License. # limitations under the License.
import contextlib from ..wrapped_decorator import signature_safe_contextmanager
import numpy as np import numpy as np
from paddle.fluid import core from paddle.fluid import core
...@@ -24,7 +24,7 @@ def enabled(): ...@@ -24,7 +24,7 @@ def enabled():
return framework._in_imperative_mode() return framework._in_imperative_mode()
@contextlib.contextmanager @signature_safe_contextmanager
def guard(place=None): def guard(place=None):
train = framework.Program() train = framework.Program()
startup = framework.Program() startup = framework.Program()
......
...@@ -16,7 +16,7 @@ from __future__ import print_function ...@@ -16,7 +16,7 @@ from __future__ import print_function
from . import framework from . import framework
import numpy as np import numpy as np
import contextlib from .wrapped_decorator import signature_safe_contextmanager
from .core import VarDesc from .core import VarDesc
from . import unique_name from . import unique_name
...@@ -49,7 +49,7 @@ def force_init_on_cpu(): ...@@ -49,7 +49,7 @@ def force_init_on_cpu():
return _force_init_on_cpu_ return _force_init_on_cpu_
@contextlib.contextmanager @signature_safe_contextmanager
def init_on_cpu(): def init_on_cpu():
""" """
Force the variable to be inited on CPU. Force the variable to be inited on CPU.
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# limitations under the License. # limitations under the License.
from __future__ import print_function from __future__ import print_function
import contextlib from ..wrapped_decorator import signature_safe_contextmanager
from .layer_function_generator import autodoc, templatedoc from .layer_function_generator import autodoc, templatedoc
from .tensor import assign, fill_constant from .tensor import assign, fill_constant
...@@ -1532,7 +1532,7 @@ class DynamicRNN(object): ...@@ -1532,7 +1532,7 @@ class DynamicRNN(object):
outputs={'Out': [x_reordered]}) outputs={'Out': [x_reordered]})
return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table) return shrink_memory(x_reordered, self.step_idx, self.lod_rank_table)
@contextlib.contextmanager @signature_safe_contextmanager
def block(self): def block(self):
""" """
The block for user to define operators in RNN. See the class docstring The block for user to define operators in RNN. See the class docstring
......
...@@ -13,7 +13,7 @@ ...@@ -13,7 +13,7 @@
# limitations under the License. # limitations under the License.
from __future__ import print_function from __future__ import print_function
import contextlib from ..wrapped_decorator import signature_safe_contextmanager
import multiprocessing import multiprocessing
import os import os
import six import six
...@@ -1116,7 +1116,7 @@ class Preprocessor(object): ...@@ -1116,7 +1116,7 @@ class Preprocessor(object):
def _is_completed(self): def _is_completed(self):
return self.sub_block and self.source_var_names and self.sink_var_names return self.sub_block and self.source_var_names and self.sink_var_names
@contextlib.contextmanager @signature_safe_contextmanager
def block(self): def block(self):
self.status = Preprocessor.IN_SUB_BLOCK self.status = Preprocessor.IN_SUB_BLOCK
self.sub_block = self.main_prog._create_block() self.sub_block = self.main_prog._create_block()
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
from __future__ import print_function from __future__ import print_function
from collections import defaultdict from collections import defaultdict
from contextlib import contextmanager from .wrapped_decorator import signature_safe_contextmanager
from paddle.fluid.framework import Program, Variable, name_scope, default_main_program from paddle.fluid.framework import Program, Variable, name_scope, default_main_program
from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table from paddle.fluid.distribute_lookup_table import find_distributed_lookup_table
...@@ -1610,7 +1610,7 @@ class ModelAverage(Optimizer): ...@@ -1610,7 +1610,7 @@ class ModelAverage(Optimizer):
}, },
stop_gradient=True) stop_gradient=True)
@contextmanager @signature_safe_contextmanager
def apply(self, executor, need_restore=True): def apply(self, executor, need_restore=True):
"""Apply average values to parameters of current model. """Apply average values to parameters of current model.
""" """
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
from __future__ import print_function from __future__ import print_function
from . import core from . import core
from contextlib import contextmanager from .wrapped_decorator import signature_safe_contextmanager
import os import os
import six import six
...@@ -35,7 +35,7 @@ NVPROF_CONFIG = [ ...@@ -35,7 +35,7 @@ NVPROF_CONFIG = [
] ]
@contextmanager @signature_safe_contextmanager
def cuda_profiler(output_file, output_mode=None, config=None): def cuda_profiler(output_file, output_mode=None, config=None):
"""The CUDA profiler. """The CUDA profiler.
This fuctions is used to profile CUDA program by CUDA runtime application This fuctions is used to profile CUDA program by CUDA runtime application
...@@ -217,7 +217,7 @@ def stop_profiler(sorted_key=None, profile_path='/tmp/profile'): ...@@ -217,7 +217,7 @@ def stop_profiler(sorted_key=None, profile_path='/tmp/profile'):
core.disable_profiler(key_map[sorted_key], profile_path) core.disable_profiler(key_map[sorted_key], profile_path)
@contextmanager @signature_safe_contextmanager
def profiler(state, sorted_key=None, profile_path='/tmp/profile'): def profiler(state, sorted_key=None, profile_path='/tmp/profile'):
"""The profiler interface. """The profiler interface.
Different from cuda_profiler, this profiler can be used to profile both CPU Different from cuda_profiler, this profiler can be used to profile both CPU
......
...@@ -15,14 +15,14 @@ ...@@ -15,14 +15,14 @@
from __future__ import print_function from __future__ import print_function
import os import os
import contextlib from .wrapped_decorator import signature_safe_contextmanager
from . import core from . import core
__all__ = [ __all__ = [
'convert_reader_to_recordio_file', 'convert_reader_to_recordio_files' 'convert_reader_to_recordio_file', 'convert_reader_to_recordio_files'
] ]
@contextlib.contextmanager @signature_safe_contextmanager
def create_recordio_writer(filename, def create_recordio_writer(filename,
compressor=core.RecordIOWriter.Compressor.Snappy, compressor=core.RecordIOWriter.Compressor.Snappy,
max_num_records=1000): max_num_records=1000):
......
...@@ -15,7 +15,7 @@ ...@@ -15,7 +15,7 @@
from __future__ import print_function from __future__ import print_function
import collections import collections
import contextlib from .wrapped_decorator import signature_safe_contextmanager
import six import six
import sys import sys
...@@ -68,7 +68,7 @@ def switch(new_generator=None): ...@@ -68,7 +68,7 @@ def switch(new_generator=None):
return old return old
@contextlib.contextmanager @signature_safe_contextmanager
def guard(new_generator=None): def guard(new_generator=None):
if isinstance(new_generator, six.string_types): if isinstance(new_generator, six.string_types):
new_generator = UniqueNameGenerator(new_generator) new_generator = UniqueNameGenerator(new_generator)
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import decorator
import contextlib
__all__ = ['wrap_decorator', 'signature_safe_contextmanager']
def wrap_decorator(decorator_func):
@decorator.decorator
def __impl__(func, *args, **kwargs):
wrapped_func = decorator_func(func)
return wrapped_func(*args, **kwargs)
return __impl__
signature_safe_contextmanager = wrap_decorator(contextlib.contextmanager)
...@@ -11,3 +11,4 @@ graphviz ...@@ -11,3 +11,4 @@ graphviz
six six
funcsigs funcsigs
pyyaml pyyaml
decorator
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册