Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
fa8c192d
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
fa8c192d
编写于
6月 27, 2019
作者:
Z
zhupengyang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add conv_direct&depthwise_int8 unit test
上级
8cb2fb54
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
383 addition
and
0 deletion
+383
-0
paddle/fluid/lite/kernels/arm/conv_compute_test.cc
paddle/fluid/lite/kernels/arm/conv_compute_test.cc
+383
-0
未找到文件。
paddle/fluid/lite/kernels/arm/conv_compute_test.cc
浏览文件 @
fa8c192d
...
...
@@ -456,6 +456,389 @@ TEST(conv_arm_int8, int8_fp32) {
}
}
TEST
(
conv_direct_int8
,
compute
)
{
DeviceInfo
::
Init
();
for
(
auto
n
:
{
1
,
2
})
{
for
(
auto
ic
:
{
1
,
3
,
8
})
{
for
(
auto
oc
:
{
1
,
3
,
8
})
{
for
(
auto
ih
:
{
5
,
15
,
28
})
{
for
(
auto
iw
:
{
5
,
15
,
28
})
{
for
(
auto
flag_bias
:
{
false
,
true
})
{
for
(
auto
flag_relu
:
{
false
,
true
})
{
for
(
auto
depthwise
:
{
false
,
/*true*/
})
{
for
(
auto
dilation
:
{
1
})
{
for
(
auto
stride
:
{
1
,
2
})
{
for
(
auto
padding
:
{
1
})
{
for
(
auto
ks
:
{
3
})
{
int
group
=
1
;
if
(
depthwise
)
{
// depthwise convolution ?
group
=
oc
=
ic
;
}
const
int
dks
=
dilation
*
(
ks
-
1
)
+
1
;
int
oh
=
(
ih
+
2
*
padding
-
dks
)
/
stride
+
1
;
int
ow
=
(
iw
+
2
*
padding
-
dks
)
/
stride
+
1
;
std
::
vector
<
int64_t
>
input_shape
=
{
n
,
ic
,
ih
,
iw
};
std
::
vector
<
int64_t
>
filter_shape
=
{
oc
,
ic
/
group
,
ks
,
ks
};
std
::
vector
<
int64_t
>
bias_shape
({
1
,
oc
,
1
,
1
});
std
::
vector
<
int64_t
>
output_shape
({
n
,
oc
,
oh
,
ow
});
Tensor
input_fp32
,
input_int8
;
Tensor
filter_fp32
,
filter_int8
;
Tensor
bias_int32
;
Tensor
output_int32_ref
,
output_int32
;
Tensor
output_fp32_ref
,
output_fp32
;
Tensor
output_int8_ref
,
output_int8
;
input_fp32
.
Resize
(
input_shape
);
input_int8
.
Resize
(
input_shape
);
filter_fp32
.
Resize
(
filter_shape
);
filter_int8
.
Resize
(
filter_shape
);
bias_int32
.
Resize
(
bias_shape
);
output_int32
.
Resize
(
output_shape
);
output_int32_ref
.
Resize
(
output_shape
);
output_fp32_ref
.
Resize
(
output_shape
);
output_fp32
.
Resize
(
output_shape
);
output_int8_ref
.
Resize
(
output_shape
);
output_int8
.
Resize
(
output_shape
);
float
*
input_fp32_data
=
input_fp32
.
mutable_data
<
float
>
();
int8_t
*
input_int8_data
=
input_int8
.
mutable_data
<
int8_t
>
();
float
*
filter_fp32_data
=
filter_fp32
.
mutable_data
<
float
>
();
int8_t
*
filter_int8_data
=
filter_int8
.
mutable_data
<
int8_t
>
();
int
*
bias_int32_data
=
bias_int32
.
mutable_data
<
int32_t
>
();
for
(
int
i
=
0
;
i
<
input_fp32
.
dims
().
production
();
i
++
)
{
input_fp32_data
[
i
]
=
i
%
10
*
(
i
%
3
-
1
);
}
for
(
int
i
=
0
;
i
<
filter_fp32
.
dims
().
production
();
i
++
)
{
filter_fp32_data
[
i
]
=
i
%
10
*
(
i
%
3
-
1
);
}
for
(
int
i
=
0
;
i
<
bias_int32
.
dims
().
production
();
i
++
)
{
bias_int32_data
[
i
]
=
i
%
10
*
(
i
%
3
-
1
);
}
std
::
vector
<
float
>
in_scale
;
lite
::
arm
::
math
::
get_tensor_scale
<
PRECISION
(
kFloat
)
>
(
input_fp32
,
&
in_scale
,
-
1
,
127.
f
);
lite
::
arm
::
math
::
trans_tensor_fp32_to_int8
(
&
input_fp32
,
&
input_int8
,
in_scale
[
0
]);
std
::
vector
<
float
>
w_scale
;
lite
::
arm
::
math
::
get_tensor_scale
<
PRECISION
(
kFloat
)
>
(
filter_fp32
,
&
w_scale
,
-
1
,
127.
f
);
int
axis_size
=
oc
;
int
inner_size
=
ic
/
group
*
ks
*
ks
;
w_scale
=
lite
::
arm
::
math
::
get_tensor_scale_n
(
filter_fp32_data
,
axis_size
,
inner_size
,
127.
f
);
lite
::
arm
::
math
::
fp32_to_int8
(
filter_fp32_data
,
filter_int8_data
,
w_scale
.
data
(),
axis_size
,
1
,
inner_size
);
operators
::
ConvParam
param
;
param
.
x
=
&
input_int8
;
param
.
filter
=
&
filter_int8
;
if
(
flag_bias
)
{
param
.
bias
=
&
bias_int32
;
}
param
.
fuse_relu
=
false
;
param
.
paddings
=
std
::
vector
<
int
>
({
padding
,
padding
});
param
.
strides
=
std
::
vector
<
int
>
({
stride
,
stride
});
param
.
dilations
=
std
::
vector
<
int
>
({
dilation
,
dilation
});
param
.
groups
=
group
;
param
.
output
=
&
output_int32_ref
;
conv_compute_ref
<
int8_t
,
int
>
(
param
);
int
*
output_int32_ref_data
=
output_int32_ref
.
mutable_data
<
int
>
();
// ============ int8direct_int32 ============
param
.
output
=
&
output_int32
;
std
::
unique_ptr
<
KernelContext
>
ctx_int32
(
new
KernelContext
);
lite
::
arm
::
math
::
DirectConvInt8
<
PRECISION
(
kInt32
)
>
int8direct_int32
;
int8direct_int32
.
init
(
param
,
&
ctx_int32
->
As
<
ARMContext
>
());
int8direct_int32
.
create
(
param
,
&
ctx_int32
->
As
<
ARMContext
>
());
int8direct_int32
.
run
(
param
);
int
*
output_int32_data
=
output_int32
.
mutable_data
<
int
>
();
for
(
int
i
=
0
;
i
<
output_int32
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_int32_data
[
i
],
output_int32_ref_data
[
i
],
1e-3
);
}
// ============ int8direct_int8 ============
int8_t
*
output_int8_ref_data
=
output_int8_ref
.
mutable_data
<
int8_t
>
();
lite
::
arm
::
math
::
trans_tensor_int32_to_int8
(
&
output_int32_ref
,
&
output_int8_ref
,
in_scale
[
0
],
1
,
w_scale
);
param
.
output
=
&
output_int8
;
param
.
input_scale
=
in_scale
[
0
];
param
.
output_scale
=
1
;
param
.
weight_scale
=
w_scale
;
std
::
unique_ptr
<
KernelContext
>
ctx_int8
(
new
KernelContext
);
lite
::
arm
::
math
::
DirectConvInt8
<
PRECISION
(
kInt8
)
>
int8direct_int8
;
int8direct_int8
.
init
(
param
,
&
ctx_int8
->
As
<
ARMContext
>
());
int8direct_int8
.
create
(
param
,
&
ctx_int8
->
As
<
ARMContext
>
());
int8direct_int8
.
run
(
param
);
int8_t
*
output_int8_data
=
output_int8
.
mutable_data
<
int8_t
>
();
for
(
int
i
=
0
;
i
<
output_int8
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_int8_data
[
i
],
output_int8_ref_data
[
i
],
1e-3
);
}
// ============ int8direct_float32 ============
float
*
output_fp32_ref_data
=
output_fp32_ref
.
mutable_data
<
float
>
();
lite
::
arm
::
math
::
trans_tensor_int32_to_fp32
(
&
output_int32_ref
,
&
output_fp32_ref
,
in_scale
[
0
],
w_scale
);
param
.
output
=
&
output_fp32
;
param
.
input_scale
=
in_scale
[
0
];
param
.
output_scale
=
1
;
param
.
weight_scale
=
w_scale
;
std
::
unique_ptr
<
KernelContext
>
ctx_fp32
(
new
KernelContext
);
lite
::
arm
::
math
::
DirectConvInt8
<
PRECISION
(
kFloat
)
>
int8direct_fp32
;
int8direct_fp32
.
init
(
param
,
&
ctx_fp32
->
As
<
ARMContext
>
());
int8direct_fp32
.
create
(
param
,
&
ctx_fp32
->
As
<
ARMContext
>
());
int8direct_fp32
.
run
(
param
);
float
*
output_fp32_data
=
output_fp32
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
output_fp32
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_fp32_data
[
i
],
output_fp32_ref_data
[
i
],
1e-3
);
}
}
}
}
}
}
}
}
}
}
}
}
}
}
TEST
(
conv_depthwise_int8
,
compute
)
{
DeviceInfo
::
Init
();
for
(
auto
n
:
{
1
,
2
})
{
for
(
auto
ic
:
{
1
,
3
,
8
})
{
for
(
auto
ih
:
{
5
,
15
,
28
})
{
for
(
auto
iw
:
{
5
,
15
,
28
})
{
for
(
auto
flag_bias
:
{
false
,
true
})
{
for
(
auto
flag_relu
:
{
false
,
true
})
{
for
(
auto
dilation
:
{
1
})
{
for
(
auto
stride
:
{
1
,
2
})
{
for
(
auto
padding
:
{
1
,
2
})
{
for
(
auto
ks
:
{
3
,
/*5 */
})
{
int
group
=
ic
;
int
oc
=
ic
;
bool
flag_dw_3x3
=
(
ks
==
3
)
&&
(
padding
==
1
)
&&
(
stride
==
1
||
stride
==
2
);
bool
flag_dw_5x5
=
(
ks
==
5
&&
stride
==
1
&&
padding
==
2
);
bool
flag_dw
=
flag_dw_3x3
||
flag_dw_5x5
;
if
(
!
flag_dw
)
continue
;
const
int
dks
=
dilation
*
(
ks
-
1
)
+
1
;
int
oh
=
(
ih
+
2
*
padding
-
dks
)
/
stride
+
1
;
int
ow
=
(
iw
+
2
*
padding
-
dks
)
/
stride
+
1
;
std
::
vector
<
int64_t
>
input_shape
=
{
n
,
ic
,
ih
,
iw
};
std
::
vector
<
int64_t
>
filter_shape
=
{
oc
,
ic
/
group
,
ks
,
ks
};
std
::
vector
<
int64_t
>
bias_shape
({
1
,
oc
,
1
,
1
});
std
::
vector
<
int64_t
>
output_shape
({
n
,
oc
,
oh
,
ow
});
Tensor
input_fp32
,
input_int8
;
Tensor
filter_fp32
,
filter_int8
;
Tensor
bias_int32
;
Tensor
output_int32_ref
,
output_int32
;
Tensor
output_fp32_ref
,
output_fp32
;
Tensor
output_int8_ref
,
output_int8
;
input_fp32
.
Resize
(
input_shape
);
input_int8
.
Resize
(
input_shape
);
filter_fp32
.
Resize
(
filter_shape
);
filter_int8
.
Resize
(
filter_shape
);
bias_int32
.
Resize
(
bias_shape
);
output_int32
.
Resize
(
output_shape
);
output_int32_ref
.
Resize
(
output_shape
);
output_fp32_ref
.
Resize
(
output_shape
);
output_fp32
.
Resize
(
output_shape
);
output_int8_ref
.
Resize
(
output_shape
);
output_int8
.
Resize
(
output_shape
);
float
*
input_fp32_data
=
input_fp32
.
mutable_data
<
float
>
();
int8_t
*
input_int8_data
=
input_int8
.
mutable_data
<
int8_t
>
();
float
*
filter_fp32_data
=
filter_fp32
.
mutable_data
<
float
>
();
int8_t
*
filter_int8_data
=
filter_int8
.
mutable_data
<
int8_t
>
();
int
*
bias_int32_data
=
bias_int32
.
mutable_data
<
int32_t
>
();
for
(
int
i
=
0
;
i
<
input_fp32
.
dims
().
production
();
i
++
)
{
input_fp32_data
[
i
]
=
i
%
10
*
(
i
%
3
-
1
);
}
for
(
int
i
=
0
;
i
<
filter_fp32
.
dims
().
production
();
i
++
)
{
filter_fp32_data
[
i
]
=
i
%
10
*
(
i
%
3
-
1
);
}
for
(
int
i
=
0
;
i
<
bias_int32
.
dims
().
production
();
i
++
)
{
bias_int32_data
[
i
]
=
i
%
10
*
(
i
%
3
-
1
);
}
std
::
vector
<
float
>
in_scale
;
lite
::
arm
::
math
::
get_tensor_scale
<
PRECISION
(
kFloat
)
>
(
input_fp32
,
&
in_scale
,
-
1
,
127.
f
);
lite
::
arm
::
math
::
trans_tensor_fp32_to_int8
(
&
input_fp32
,
&
input_int8
,
in_scale
[
0
]);
std
::
vector
<
float
>
w_scale
;
lite
::
arm
::
math
::
get_tensor_scale
<
PRECISION
(
kFloat
)
>
(
filter_fp32
,
&
w_scale
,
-
1
,
127.
f
);
int
axis_size
=
oc
;
int
inner_size
=
ic
/
group
*
ks
*
ks
;
w_scale
=
lite
::
arm
::
math
::
get_tensor_scale_n
(
filter_fp32_data
,
axis_size
,
inner_size
,
127.
f
);
lite
::
arm
::
math
::
fp32_to_int8
(
filter_fp32_data
,
filter_int8_data
,
w_scale
.
data
(),
axis_size
,
1
,
inner_size
);
operators
::
ConvParam
param
;
param
.
x
=
&
input_int8
;
param
.
filter
=
&
filter_int8
;
if
(
flag_bias
)
{
param
.
bias
=
&
bias_int32
;
}
param
.
fuse_relu
=
false
;
param
.
paddings
=
std
::
vector
<
int
>
({
padding
,
padding
});
param
.
strides
=
std
::
vector
<
int
>
({
stride
,
stride
});
param
.
dilations
=
std
::
vector
<
int
>
({
dilation
,
dilation
});
param
.
groups
=
group
;
param
.
output
=
&
output_int32_ref
;
conv_compute_ref
<
int8_t
,
int
>
(
param
);
int
*
output_int32_ref_data
=
output_int32_ref
.
mutable_data
<
int
>
();
// ============ int8depthwise_int32 ============
param
.
output
=
&
output_int32
;
std
::
unique_ptr
<
KernelContext
>
ctx_int32
(
new
KernelContext
);
lite
::
arm
::
math
::
DepthwiseConvInt8
<
PRECISION
(
kInt32
)
>
int8depthwise_int32
;
int8depthwise_int32
.
init
(
param
,
&
ctx_int32
->
As
<
ARMContext
>
());
int8depthwise_int32
.
create
(
param
,
&
ctx_int32
->
As
<
ARMContext
>
());
int8depthwise_int32
.
run
(
param
);
int
*
output_int32_data
=
output_int32
.
mutable_data
<
int
>
();
for
(
int
i
=
0
;
i
<
output_int32
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_int32_data
[
i
],
output_int32_ref_data
[
i
],
1e-3
);
}
// ============ int8depthwise_int8============
int8_t
*
output_int8_ref_data
=
output_int8_ref
.
mutable_data
<
int8_t
>
();
lite
::
arm
::
math
::
trans_tensor_int32_to_int8
(
&
output_int32_ref
,
&
output_int8_ref
,
in_scale
[
0
],
1
,
w_scale
);
param
.
output
=
&
output_int8
;
param
.
input_scale
=
in_scale
[
0
];
param
.
output_scale
=
1
;
param
.
weight_scale
=
w_scale
;
std
::
unique_ptr
<
KernelContext
>
ctx_int8
(
new
KernelContext
);
lite
::
arm
::
math
::
DepthwiseConvInt8
<
PRECISION
(
kInt8
)
>
int8depthwise_int8
;
int8depthwise_int8
.
init
(
param
,
&
ctx_int8
->
As
<
ARMContext
>
());
int8depthwise_int8
.
create
(
param
,
&
ctx_int8
->
As
<
ARMContext
>
());
int8depthwise_int8
.
run
(
param
);
int8_t
*
output_int8_data
=
output_int8
.
mutable_data
<
int8_t
>
();
for
(
int
i
=
0
;
i
<
output_int8
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_int8_data
[
i
],
output_int8_ref_data
[
i
],
1e-3
);
}
// ============int8depthwise_float32 ============
float
*
output_fp32_ref_data
=
output_fp32_ref
.
mutable_data
<
float
>
();
lite
::
arm
::
math
::
trans_tensor_int32_to_fp32
(
&
output_int32_ref
,
&
output_fp32_ref
,
in_scale
[
0
],
w_scale
);
param
.
output
=
&
output_fp32
;
param
.
input_scale
=
in_scale
[
0
];
param
.
output_scale
=
1
;
param
.
weight_scale
=
w_scale
;
std
::
unique_ptr
<
KernelContext
>
ctx_fp32
(
new
KernelContext
);
lite
::
arm
::
math
::
DepthwiseConvInt8
<
PRECISION
(
kFloat
)
>
int8depthwise_fp32
;
int8depthwise_fp32
.
init
(
param
,
&
ctx_fp32
->
As
<
ARMContext
>
());
int8depthwise_fp32
.
create
(
param
,
&
ctx_fp32
->
As
<
ARMContext
>
());
int8depthwise_fp32
.
run
(
param
);
float
*
output_fp32_data
=
output_fp32
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
output_fp32
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_fp32_data
[
i
],
output_fp32_ref_data
[
i
],
1e-3
);
}
}
}
}
}
}
}
}
}
}
}
}
TEST
(
conv_arm
,
compute
)
{
DeviceInfo
::
Init
();
#if 1
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录