未验证 提交 f9796b12 编写于 作者: Y Yibing Liu 提交者: GitHub

Add LAMB Optimizer support (#17489)

* Add LAMB optimizer

* Expose LAMB Optimizer's APIs

test=develop, test=document_preview

* Cleanup code & doc

test=develop, test=document_preview

* Update lamb optimizer's formula

test=develop
上级 99ab5712
......@@ -516,6 +516,12 @@ paddle.fluid.optimizer.DGCMomentumOptimizer.apply_optimize (ArgSpec(args=['self'
paddle.fluid.optimizer.DGCMomentumOptimizer.backward (ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', 'ba3a113d0229ff7bc9d39bda0a6d947f'))
paddle.fluid.optimizer.DGCMomentumOptimizer.get_opti_var_name_list (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.optimizer.DGCMomentumOptimizer.minimize (ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '35fd5d3330c97903528c7e0dacc7f6ea'))
paddle.fluid.optimizer.LambOptimizer.__init__ (ArgSpec(args=['self', 'learning_rate', 'lamb_weight_decay', 'beta1', 'beta2', 'epsilon', 'regularization', 'name'], varargs=None, keywords=None, defaults=(0.001, 0.01, 0.9, 0.999, 1e-06, None, None)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.optimizer.LambOptimizer.apply_gradients (ArgSpec(args=['self', 'params_grads'], varargs=None, keywords=None, defaults=None), ('document', 'bfe7305918552aaecfdaa22411dbe871'))
paddle.fluid.optimizer.LambOptimizer.apply_optimize (ArgSpec(args=['self', 'loss', 'startup_program', 'params_grads'], varargs=None, keywords=None, defaults=None), ('document', '5c46d1926a40f1f873ffe9f37ac89dae'))
paddle.fluid.optimizer.LambOptimizer.backward (ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None, None)), ('document', 'ba3a113d0229ff7bc9d39bda0a6d947f'))
paddle.fluid.optimizer.LambOptimizer.get_opti_var_name_list (ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.optimizer.LambOptimizer.minimize (ArgSpec(args=['self', 'loss', 'startup_program', 'parameter_list', 'no_grad_set'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '35fd5d3330c97903528c7e0dacc7f6ea'))
paddle.fluid.backward.append_backward (ArgSpec(args=['loss', 'parameter_list', 'no_grad_set', 'callbacks'], varargs=None, keywords=None, defaults=(None, None, None)), ('document', '08a5dd9f6f376ff3d55e0b1d92115cbd'))
paddle.fluid.regularizer.L1DecayRegularizer.__init__ (ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
paddle.fluid.regularizer.L2DecayRegularizer.__init__ (ArgSpec(args=['self', 'regularization_coeff'], varargs=None, keywords=None, defaults=(0.0,)), ('document', '6adf97f83acf6453d4a6a4b1070f3754'))
......
......@@ -18,11 +18,8 @@ namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
class AdamOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
void AdamOp::InferShape(framework::InferShapeContext* ctx) const {
PADDLE_ENFORCE(ctx->HasInput("Param"),
"Input(Param) of AdamOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Grad"),
......@@ -72,13 +69,13 @@ class AdamOp : public framework::OperatorWithKernel {
ctx->SetOutputDim("ParamOut", param_dims);
ctx->SetOutputDim("Moment1Out", param_dims);
ctx->SetOutputDim("Moment2Out", param_dims);
}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
auto input_data_type = ctx.Input<Tensor>("Param")->type();
}
framework::OpKernelType AdamOp::GetExpectedKernelType(
const framework::ExecutionContext& ctx) const {
auto input_data_type = ctx.Input<framework::Tensor>("Param")->type();
return framework::OpKernelType(input_data_type, ctx.GetPlace());
}
};
}
class AdamOpMaker : public framework::OpProtoAndCheckerMaker {
public:
......
......@@ -29,6 +29,15 @@ namespace operators {
namespace scatter = paddle::operators::math::scatter;
class AdamOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override;
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override;
};
struct GPUAdam;
struct CPUAdam;
......
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/optimizers/lamb_op.h"
#include "paddle/fluid/operators/optimizers/adam_op.h"
namespace paddle {
namespace operators {
class LambOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Param",
"(LoDTensor, default LoDTensor<float>) "
"Input parameter that has to be updated.");
AddInput("Grad",
"(LoDTensor, default LoDTensor<float>) "
"Input gradient of the parameter.");
AddInput("LearningRate", "(Tensor) Learning rate.");
AddInput("Moment1", "(Tensor) Input first moment.");
AddInput("Moment2", "(Tensor) Input second moment.");
AddInput("Beta1Pow", "(Tensor) Input beta1 power accumulator.");
AddInput("Beta2Pow", "(Tensor) Input beta2 power accumulator.");
AddOutput("ParamOut", "(Tensor) Output parameter.");
AddOutput("Moment1Out", "(Tensor) Output first moment.");
AddOutput("Moment2Out", "(Tensor) Output second moment.");
AddAttr<float>("weight_decay", "(float) Weight decay rate.");
AddAttr<float>("beta1",
"(float, default 0.9) The exponential decay rate for the "
"1st moment estimates.")
.SetDefault(0.9);
AddAttr<float>("beta2",
"(float, default 0.999) The exponential decay rate for the "
"2nd moment estimates.")
.SetDefault(0.999);
AddAttr<float>("epsilon",
"(float, default 1.0e-6) "
"Constant for numerical stability.")
.SetDefault(1.0e-6f);
AddComment(R"DOC(
LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.
LAMB Optimizer is designed to scale up the batch size of training without losing
accuracy, which supports adaptive element-wise updating and accurate layer-wise
correction. For more information, please refer to https://arxiv.org/abs/1904.00962.
The updating of parameters follows:
$$
m_t^l &= \beta_1 m_{t - 1}^l + (1 - \beta_1)g_t^l \\
v_t^l &= \beta_2 v_{t - 1}^l + (1 - \beta_2)g_t^l \odot g_t^l \\
\widehat{m}_t^l &= m_t^l/(1 - \beta_1^t) \\
\widehat{v}_t^l &= v_t^l/(1 - \beta_2^t) \\
r_1 &= \left \| w_{t-1}^l \right \|_2 \\
r_2 &= \left \| \frac{\widehat{m}_t^l}{\sqrt{\widehat{v}_t^l+\epsilon}} + \lambda w_{t-1}^l \right \|_2 \\
r &= r_1 / r_2 \\
\eta^l &= r \times \eta \\
w_t^l &= w_{t-1}^l -\eta ^l \times (\frac{\widehat{m}_t^l}{\sqrt{\widehat{v}_t^l+\epsilon}} + \lambda w_{t-1}^l)
$$
where $m$ is the 1st moment, and $v$ the 2nd moment, $\eta$ the
learning rate, $\lambda$ the weight decay rate.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(lamb, ops::AdamOp, ops::LambOpMaker);
REGISTER_OP_CPU_KERNEL(
lamb, ops::LambOpKernel<paddle::platform::CPUDeviceContext, float>,
ops::LambOpKernel<paddle::platform::CPUDeviceContext, double>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/optimizers/lamb_op.h"
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(
lamb, ops::LambOpKernel<paddle::platform::CUDADeviceContext, float>,
ops::LambOpKernel<paddle::platform::CUDADeviceContext, double>);
/* Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <math.h> // for sqrt in CPU and CUDA
#include <Eigen/Dense>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/detail/safe_ref.h"
#include "paddle/fluid/operators/math/algorithm.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/for_range.h"
namespace paddle {
namespace operators {
namespace scatter = paddle::operators::math::scatter;
template <typename T>
struct LambMomentUpdateFunctor {
T weight_decay_;
T beta1_;
T beta2_;
T epsilon_;
const T* beta1_pow_;
const T* beta2_pow_;
const T* moment1_;
T* moment1_out_;
const T* moment2_;
T* moment2_out_;
const T* grad_;
const T* param_;
T* trust_ratio_div_;
LambMomentUpdateFunctor(T weight_decay, T beta1, T beta2, T epsilon,
const T* beta1_pow, const T* beta2_pow, const T* mom1,
T* mom1_out, const T* mom2, T* mom2_out,
const T* grad, const T* param, T* trust_ratio_div)
: weight_decay_(weight_decay),
beta1_(beta1),
beta2_(beta2),
epsilon_(epsilon),
beta1_pow_(beta1_pow),
beta2_pow_(beta2_pow),
moment1_(mom1),
moment1_out_(mom1_out),
moment2_(mom2),
moment2_out_(mom2_out),
grad_(grad),
param_(param),
trust_ratio_div_(trust_ratio_div) {}
inline HOSTDEVICE void operator()(size_t i) const {
T g = grad_[i];
T mom1 = moment1_[i];
T mom2 = moment2_[i];
T beta1_pow = *beta1_pow_;
T beta2_pow = *beta2_pow_;
T p = param_[i];
mom1 = beta1_ * mom1 + (1 - beta1_) * g;
mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
T mom1_h = mom1 / (1 - beta1_pow);
T mom2_h = mom2 / (1 - beta2_pow);
moment1_out_[i] = mom1;
moment2_out_[i] = mom2;
trust_ratio_div_[i] = mom1_h / sqrt(mom2_h + epsilon_) + weight_decay_ * p;
}
};
template <typename T>
struct SparseLambMomentUpdateFunctor {
T weight_decay_;
T beta1_;
T beta2_;
T epsilon_;
const T* beta1_pow_;
const T* beta2_pow_;
const T* moment1_;
T* moment1_out_;
const T* moment2_;
T* moment2_out_;
const T* grad_;
const T* param_;
T* trust_ratio_div_;
const int64_t* rows_;
int64_t row_numel_;
int64_t row_count_;
SparseLambMomentUpdateFunctor(T weight_decay, T beta1, T beta2, T epsilon,
const T* beta1_pow, const T* beta2_pow,
const T* mom1, T* mom1_out, const T* mom2,
T* mom2_out, const T* grad, const T* param,
T* trust_ratio_div, const int64_t* rows,
int64_t row_numel, int64_t row_count)
: weight_decay_(weight_decay),
beta1_(beta1),
beta2_(beta2),
epsilon_(epsilon),
beta1_pow_(beta1_pow),
beta2_pow_(beta2_pow),
moment1_(mom1),
moment1_out_(mom1_out),
moment2_(mom2),
moment2_out_(mom2_out),
grad_(grad),
param_(param),
trust_ratio_div_(trust_ratio_div),
rows_(rows),
row_numel_(row_numel),
row_count_(row_count) {}
inline HOSTDEVICE void update(size_t i, T g) const {
// The following code is same as dense
T mom1 = moment1_[i];
T mom2 = moment2_[i];
T beta1_pow = *beta1_pow_;
T beta2_pow = *beta2_pow_;
T p = param_[i];
mom1 = beta1_ * mom1 + (1 - beta1_) * g;
mom2 = beta2_ * mom2 + (1 - beta2_) * g * g;
T mom1_h = mom1 / (1 - beta1_pow);
T mom2_h = mom2 / (1 - beta2_pow);
moment1_out_[i] = mom1;
moment2_out_[i] = mom2;
trust_ratio_div_[i] = mom1_h / sqrt(mom2_h + epsilon_) + weight_decay_ * p;
}
inline HOSTDEVICE void operator()(size_t i) const {
auto row_idx =
math::BinarySearch<int64_t>(rows_, row_count_, i / row_numel_);
T g = row_idx >= 0 ? grad_[row_idx * row_numel_ + i % row_numel_] : 0;
update(i, g);
}
};
template <typename T>
struct LambParamUpateFunctor {
const T* lr_;
const T* param_;
const T* param_norm_;
const T* trust_ratio_div_;
const T* trust_ratio_div_norm_;
T* param_out_;
LambParamUpateFunctor(const T* lr, const T* param, const T* param_norm,
const T* trust_ratio_div, const T* trust_ratio_div_norm,
T* param_out)
: lr_(lr),
param_(param),
param_norm_(param_norm),
trust_ratio_div_(trust_ratio_div),
trust_ratio_div_norm_(trust_ratio_div_norm),
param_out_(param_out) {}
inline HOSTDEVICE void operator()(size_t i) const {
T lr = *lr_;
T p_norm = *param_norm_;
T tr_div_norm = *trust_ratio_div_norm_;
lr *= p_norm / tr_div_norm;
param_out_[i] = param_[i] - lr * trust_ratio_div_[i];
}
};
template <typename DeviceContext, typename T>
class LambOpKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& ctx) const override {
const auto* param_var = ctx.InputVar("Param");
PADDLE_ENFORCE(param_var->IsType<framework::LoDTensor>(),
"The Var(%s)'s type should be LoDTensor, "
"but the received is %s",
ctx.Inputs("Param").front(),
framework::ToTypeName(param_var->Type()));
using paddle::framework::LoDTensor;
using paddle::operators::detail::Ref;
T weight_decay = static_cast<T>(ctx.Attr<float>("weight_decay"));
T beta1 = static_cast<T>(ctx.Attr<float>("beta1"));
T beta2 = static_cast<T>(ctx.Attr<float>("beta2"));
T epsilon = static_cast<T>(ctx.Attr<float>("epsilon"));
auto& param = Ref(ctx.Input<LoDTensor>("Param"), "Must set Param.");
auto* grad_var = ctx.InputVar("Grad");
auto& mom1 = Ref(ctx.Input<LoDTensor>("Moment1"), "Must set Moment1.");
auto& mom2 = Ref(ctx.Input<LoDTensor>("Moment2"), "Must set Moment2.");
auto& lr =
Ref(ctx.Input<LoDTensor>("LearningRate"), "Must set LearningRate.");
auto& beta1_pow =
Ref(ctx.Input<LoDTensor>("Beta1Pow"), "Must set Beta1Pow.");
auto& beta2_pow =
Ref(ctx.Input<LoDTensor>("Beta2Pow"), "Must set Beta2Pow.");
auto& param_out =
Ref(ctx.Output<LoDTensor>("ParamOut"), "Must set ParamOut.");
auto& mom1_out =
Ref(ctx.Output<LoDTensor>("Moment1Out"), "Must set Moment1Out.");
auto& mom2_out =
Ref(ctx.Output<LoDTensor>("Moment2Out"), "Must set Moment1Out.");
auto& dev_ctx = ctx.template device_context<DeviceContext>();
platform::ForRange<DeviceContext> for_range(dev_ctx, param.numel());
framework::Tensor trust_ratio_div =
ctx.AllocateTmpTensor<T, DeviceContext>(param.dims(), dev_ctx);
// Update moments
if (grad_var->IsType<framework::LoDTensor>()) {
auto& grad = Ref(ctx.Input<LoDTensor>("Grad"), "Must set Grad.");
LambMomentUpdateFunctor<T> moment_update_functor(
weight_decay, beta1, beta2, epsilon, beta1_pow.template data<T>(),
beta2_pow.template data<T>(), mom1.template data<T>(),
mom1_out.template mutable_data<T>(ctx.GetPlace()),
mom2.template data<T>(),
mom2_out.template mutable_data<T>(ctx.GetPlace()),
grad.template data<T>(), param.template data<T>(),
trust_ratio_div.template data<T>());
for_range(moment_update_functor);
} else if (grad_var->IsType<framework::SelectedRows>()) {
auto& grad =
Ref(ctx.Input<framework::SelectedRows>("Grad"), "Must set Grad.");
if (grad.rows().size() == 0) {
VLOG(3) << "grad row size is 0!!";
return;
}
std::vector<int64_t> cpu_rows(grad.rows().begin(), grad.rows().end());
bool is_strict_sorted = true;
for (size_t i = 1; i < cpu_rows.size(); ++i) {
if (cpu_rows[i - 1] >= cpu_rows[i]) {
is_strict_sorted = false;
break;
}
}
framework::SelectedRows tmp_grad_merge;
const framework::SelectedRows* grad_merge_ptr;
if (is_strict_sorted) {
grad_merge_ptr = &grad;
} else {
// merge duplicated rows if any.
// The rows of grad_merge have been sorted inside MergeAdd functor
scatter::MergeAdd<DeviceContext, T> merge_func;
merge_func(dev_ctx, grad, &tmp_grad_merge, true);
grad_merge_ptr = &tmp_grad_merge;
}
auto& grad_merge = *grad_merge_ptr;
auto& grad_tensor = grad_merge.value();
const T* grad_data = grad_tensor.template data<T>();
const int64_t* rows = grad_merge.rows().Data(ctx.GetPlace());
auto row_numel = grad_tensor.numel() / grad_merge.rows().size();
SparseLambMomentUpdateFunctor<T> moment_update_functor(
weight_decay, beta1, beta2, epsilon, beta1_pow.template data<T>(),
beta2_pow.template data<T>(), mom1.template data<T>(),
mom1_out.template mutable_data<T>(ctx.GetPlace()),
mom2.template data<T>(),
mom2_out.template mutable_data<T>(ctx.GetPlace()), grad_data,
param.template data<T>(), trust_ratio_div.template data<T>(), rows,
row_numel, grad_merge.rows().size());
for_range(moment_update_functor);
} else {
PADDLE_THROW("Variable type not supported by lamb_op.");
}
// Update parameter
framework::Tensor p_norm_t =
ctx.AllocateTmpTensor<T, DeviceContext>({1}, dev_ctx);
framework::Tensor trust_ratio_div_norm_t =
ctx.AllocateTmpTensor<T, DeviceContext>({1}, dev_ctx);
auto p_norm = framework::EigenScalar<T>::From(p_norm_t);
auto trust_ratio_div_norm =
framework::EigenScalar<T>::From(trust_ratio_div_norm_t);
auto p = framework::EigenVector<T>::Flatten(param);
auto t = framework::EigenVector<T>::Flatten(trust_ratio_div);
auto* place = dev_ctx.eigen_device();
p_norm.device(*place) = p.square().sum().sqrt();
trust_ratio_div_norm.device(*place) = t.square().sum().sqrt();
LambParamUpateFunctor<T> param_update_functor(
lr.template data<T>(), param.template data<T>(),
p_norm_t.template data<T>(), trust_ratio_div.template data<T>(),
trust_ratio_div_norm_t.template data<T>(),
param_out.template mutable_data<T>(ctx.GetPlace()));
for_range(param_update_functor);
}
};
} // namespace operators
} // namespace paddle
......@@ -132,7 +132,7 @@ def train(net_type, use_cuda, save_dirname, is_local):
# Test program
test_program = train_program.clone(for_test=True)
optimizer = fluid.optimizer.Adam(learning_rate=0.001)
optimizer = fluid.optimizer.Lamb(learning_rate=0.001)
mp_optimizer = fluid.contrib.mixed_precision.decorate(
optimizer=optimizer,
......
......@@ -42,7 +42,7 @@ __all__ = [
'SGDOptimizer', 'MomentumOptimizer', 'AdagradOptimizer', 'AdamOptimizer',
'AdamaxOptimizer', 'DecayedAdagradOptimizer', 'RMSPropOptimizer',
'FtrlOptimizer', 'Adadelta', 'ModelAverage', 'LarsMomentum',
'LarsMomentumOptimizer', 'DGCMomentumOptimizer'
'LarsMomentumOptimizer', 'DGCMomentumOptimizer', 'LambOptimizer'
]
......@@ -1851,6 +1851,133 @@ class FtrlOptimizer(Optimizer):
return ftrl_op
class LambOptimizer(AdamOptimizer):
"""
LAMB (Layer-wise Adaptive Moments optimizer for Batching training) Optimizer.
LAMB Optimizer is designed to scale up the batch size of training without losing
accuracy, which supports adaptive element-wise updating and accurate layer-wise
correction. For more information, please refer to `Reducing BERT Pre-Training
Time from 3 Days to 76 Minutes <https://arxiv.org/abs/1904.00962>`_ .
The updating of parameters follows:
.. math::
m_t^l & = \\beta_1 m_{t - 1}^l + (1 - \\beta_1)g_t^l
v_t^l & = \\beta_2 v_{t - 1}^l + (1 - \\beta_2)g_t^l \odot g_t^l
\\widehat{m}_t^l & = m_t^l/(1 - \\beta_1^t)
\\widehat{v}_t^l & = v_t^l/(1 - \\beta_2^t)
r_1 & = \\left \| w_{t-1}^l \\right \|_2
r_2 & = \\left \| \\frac{\\widehat{m}_t^l}{\\sqrt{\\widehat{v}_t^l+\\epsilon}} + \\lambda w_{t-1}^l \\right \|_2
r & = r_1 / r_2
\\eta^l & = r \\times \\eta
w_t^l & = w_{t-1}^l -\\eta ^l \\times (\\frac{\\widehat{m}_t^l}{\\sqrt{\\widehat{v}_t^l+\\epsilon}} + \\lambda w_{t-1}^l)
where :math:`m` is the 1st moment, and :math:`v` the 2nd moment, :math:`\\eta` the
learning rate, :math:`\\lambda` the LAMB weight decay rate.
Args:
learning_rate (float|Variable): the learning rate used to update parameters. \
Can be a float value or a Variable with one \
float value as data element.
lamb_weight_decay (float): The LAMB weight decay rate.
beta1 (float): The exponential decay rate for the 1st moment estimates.
beta2 (float): The exponential decay rate for the 2nd moment estimates.
epsilon (float): A small float value for numerical stability.
regularization: A Regularizer, such as
fluid.regularizer.L1DecayRegularizer.
name (str|None): An optional name prefix.
Examples:
.. code-block:: python
import paddle.fluid as fluid
data = fluid.layers.data(name='x', shape=[5], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
cost = fluid.layers.mean(hidden)
optimizer = fluid.optimizer.Lamb(learning_rate=0.002)
optimizer.minimize(cost)
"""
_moment1_acc_str = "moment1"
_moment2_acc_str = "moment2"
_beta1_pow_acc_str = "beta1_pow_acc"
_beta2_pow_acc_str = "beta2_pow_acc"
def __init__(self,
learning_rate=0.001,
lamb_weight_decay=0.01,
beta1=0.9,
beta2=0.999,
epsilon=1e-6,
regularization=None,
name=None):
assert learning_rate is not None
assert lamb_weight_decay is not None
assert beta1 is not None
assert beta2 is not None
assert epsilon is not None
super(LambOptimizer, self).__init__(
learning_rate=learning_rate,
regularization=regularization,
beta1=beta1,
beta2=beta2,
epsilon=epsilon,
name=name)
self.type = "lamb"
self._weight_decay = lamb_weight_decay
def _append_optimize_op(self, block, param_and_grad):
assert isinstance(block, framework.Block)
moment1 = self._get_accumulator(self._moment1_acc_str,
param_and_grad[0])
moment2 = self._get_accumulator(self._moment2_acc_str,
param_and_grad[0])
beta1_pow_acc = self._get_accumulator(self._beta1_pow_acc_str,
param_and_grad[0])
beta2_pow_acc = self._get_accumulator(self._beta2_pow_acc_str,
param_and_grad[0])
# create the lamb optimize op
lamb_op = block.append_op(
type=self.type,
inputs={
"Param": param_and_grad[0],
"Grad": param_and_grad[1],
"LearningRate": self._create_param_lr(param_and_grad),
"Moment1": moment1,
"Moment2": moment2,
"Beta1Pow": beta1_pow_acc,
"Beta2Pow": beta2_pow_acc
},
outputs={
"ParamOut": param_and_grad[0],
"Moment1Out": moment1,
"Moment2Out": moment2
},
attrs={
"beta1": self._beta1,
"beta2": self._beta2,
"epsilon": self._epsilon,
"weight_decay": self._weight_decay
},
stop_gradient=True)
return lamb_op
# We short the class name, since users will use the optimizer with the package
# name. The sample code:
#
......@@ -1869,6 +1996,7 @@ Adadelta = AdadeltaOptimizer
RMSProp = RMSPropOptimizer
Ftrl = FtrlOptimizer
LarsMomentum = LarsMomentumOptimizer
Lamb = LambOptimizer
class ModelAverage(Optimizer):
......
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
from op_test import OpTest
from paddle.fluid import core
from paddle.fluid.op import Operator
class TestLambOp1(OpTest):
def set_attrs(self):
self.attrs = {
'epsilon': 1e-4,
'beta1': 0.78,
'beta2': 0.836,
'weight_decay': 0.01
}
def setUp(self):
'''Test Lamb Op with supplied attributes
'''
self.op_type = "lamb"
param = np.random.uniform(-1, 1, (102, 105)).astype("float32")
grad = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment1 = np.random.uniform(-1, 1, (102, 105)).astype("float32")
moment2 = np.random.random((102, 105)).astype("float32")
learning_rate = 0.001
self.set_attrs()
beta1_pow = self.attrs['beta1']**10
beta2_pow = self.attrs['beta2']**10
self.inputs = {
'Param': param,
'Grad': grad,
'Moment1': moment1,
'Moment2': moment2,
'LearningRate': np.array([learning_rate]).astype("float32"),
'Beta1Pow': np.array([beta1_pow]).astype("float32"),
'Beta2Pow': np.array([beta2_pow]).astype("float32")
}
param_out, moment1_out, \
moment2_out = lamb_step(self.inputs, self.attrs)
self.outputs = {
'Moment1Out': moment1_out,
'Moment2Out': moment2_out,
'ParamOut': param_out
}
def test_check_output(self):
self.check_output()
class TestLambOp2(TestLambOp1):
def set_attrs(self):
self.attrs = {
'epsilon': 1e-8,
'beta1': 0.9,
'beta2': 0.999,
'weight_decay': 0.01
}
class TestLambOpMultipleSteps(TestLambOp1):
def set_attrs(self):
self.attrs = {
'epsilon': 1e-8,
'beta1': 0.9,
'beta2': 0.999,
'weight_decay': 0.01
}
self.num_steps = 10
def test_check_output(self):
for _ in range(self.num_steps):
param_out, moment1_out, \
moment2_out = lamb_step(self.inputs, self.attrs)
self.outputs = {
'Moment1Out': moment1_out,
'Moment2Out': moment2_out,
'ParamOut': param_out
}
# Verify output for this step
self.check_output()
# Output of this step becomes input for next step
self.inputs['Param'] = param_out
self.inputs['Moment1'] = moment1_out
self.inputs['Moment2'] = moment2_out
# Update powers of Beta1 and Beta2 for next time step
self.inputs['Beta1Pow'] *= self.attrs['beta1']
self.inputs['Beta2Pow'] *= self.attrs['beta1']
# Randomize gradient for next step
self.inputs['Grad'] = np.random.uniform(
-1, 1, (102, 105)).astype("float32")
def lamb_step(inputs, attributes):
'''
Simulate one step of the lamb optimizer
:param inputs: dict of inputs
:param attributes: dict of attributes
:return tuple: tuple of output param, moment1, moment2,
beta1 power accumulator and beta2 power accumulator
'''
param = inputs['Param']
grad = inputs['Grad']
moment1 = inputs['Moment1']
moment2 = inputs['Moment2']
lr = inputs['LearningRate']
beta1_pow = inputs['Beta1Pow']
beta2_pow = inputs['Beta2Pow']
beta1 = attributes['beta1']
beta2 = attributes['beta2']
epsilon = attributes['epsilon']
weight_decay = attributes['weight_decay']
moment1_out = beta1 * moment1 + (1 - beta1) * grad
moment2_out = beta2 * moment2 + (1 - beta2) * np.square(grad)
mom1_tmp = moment1_out / (1 - beta1_pow)
mom2_tmp = moment2_out / (1 - beta2_pow)
r_1 = np.linalg.norm(param)
r_2 = np.linalg.norm(mom1_tmp / np.sqrt(mom2_tmp + epsilon) + weight_decay *
param)
lr_t = lr * r_1 / r_2
param_out = param - lr_t * (mom1_tmp / np.sqrt(mom2_tmp + epsilon) +
weight_decay * param)
return param_out, moment1_out, moment2_out
def lamb_step_sparse(inputs, attributes, height, rows, row_numel, np_grad):
'''
Simulate one step of the lamb optimizer
:param inputs: dict of inputs
:param attributes: dict of attributes
:return tuple: tuple of output param, moment1, moment2,
beta1 power accumulator and beta2 power accumulator
'''
param = inputs['Param']
# grad = inputs['Grad']
moment1 = inputs['Moment1']
moment2 = inputs['Moment2']
lr = inputs['LearningRate']
beta1_pow = inputs['Beta1Pow']
beta2_pow = inputs['Beta2Pow']
beta1 = attributes['beta1']
beta2 = attributes['beta2']
epsilon = attributes['epsilon']
weight_decay = attributes['weight_decay']
moment1_out = np.zeros(shape=[height, row_numel])
moment2_out = np.zeros(shape=[height, row_numel])
param_out = np.zeros(shape=[height, row_numel])
def update_mom(row_id, update_value):
moment1_out[row_id] = beta1 * moment1[row_id] + (1 - beta1
) * update_value
moment2_out[row_id] = beta2 * moment2[row_id] + (
1 - beta2) * np.square(update_value)
moment1_out[row_id] = beta1 * moment1[row_id] + (1 - beta1
) * update_value
moment2_out[row_id] = beta2 * moment2[row_id] + (
1 - beta2) * np.square(update_value)
def update_param():
mom1_tmp = moment1_out / (1 - beta1_pow)
mom2_tmp = moment2_out / (1 - beta2_pow)
r_1 = np.linalg.norm(param)
r_2 = np.linalg.norm(mom1_tmp / np.sqrt(mom2_tmp + epsilon) +
weight_decay * param)
lr_t = lr * r_1 / r_2
param_out = param - lr_t * (mom1_tmp / np.sqrt(mom2_tmp + epsilon) +
weight_decay * param)
for row_id in range(param_out.shape[0]):
update_value = np.zeros(np_grad[0].shape).astype("float32")
if row_id in rows:
update_value = np_grad[rows.index(row_id)]
update_mom(row_id, update_value)
update_param()
return param_out, moment1_out, moment2_out
class TestSparseLambOp(unittest.TestCase):
def setup(self, scope, place):
beta1 = 0.78
beta2 = 0.836
epsilon = 1e-4
height = 10
rows = [0, 4, 7]
self.rows = rows
row_numel = 12
self.row_numel = row_numel
self.dense_inputs = {
"Param": np.full((height, row_numel), 5.0).astype("float32"),
"Moment1": np.full((height, row_numel), 5.0).astype("float32"),
"Moment2": np.full((height, row_numel), 5.0).astype("float32"),
'Beta1Pow': np.array([beta1**10]).astype("float32"),
'Beta2Pow': np.array([beta2**10]).astype("float32"),
"LearningRate": np.full((1), 2.0).astype("float32")
}
self.init_output = np.full((height, row_numel), 0.0).astype("float32")
self.attrs = {
'epsilon': epsilon,
'beta1': beta1,
'beta2': beta2,
'weight_decay': 0.05
}
grad_selected_rows = scope.var('Grad').get_selected_rows()
grad_selected_rows.set_height(height)
grad_selected_rows.set_rows(rows)
np_array = np.ones((len(rows), row_numel)).astype("float32")
np_array[0, 0] = 2.0
np_array[2, 8] = 4.0
grad_tensor = grad_selected_rows.get_tensor()
grad_tensor.set(np_array, place)
self.sparse_inputs = ["Grad"]
param_out, mom1, mom2 = lamb_step_sparse(
self.dense_inputs, self.attrs, height, rows, row_numel, np_array)
self.outputs = {
"ParamOut": param_out,
"Moment1Out": mom1,
"Moment2Out": mom2
}
def check_with_place(self, place):
scope = core.Scope()
self.setup(scope, place)
op_args = dict()
for key, np_array in self.dense_inputs.items():
var = scope.var(key).get_tensor()
var.set(np_array, place)
op_args[key] = key
for s in self.sparse_inputs:
op_args[s] = s
for s in self.outputs:
var = scope.var(s).get_tensor()
var.set(self.init_output, place)
op_args[s] = s
for k in self.attrs:
op_args[k] = self.attrs[k]
# create and run sgd operator
lamb_op = Operator("lamb", **op_args)
lamb_op.run(scope, place)
for key, np_array in self.outputs.items():
out_var = scope.var(key).get_tensor()
actual = np.array(out_var)
actual = actual.reshape([actual.size])
np_array = np_array.reshape([np_array.size])
for i in range(np_array.size):
self.assertLess((actual[i] - np_array[i]), 0.00001)
def test_sparse_lamb(self):
places = [core.CPUPlace()]
if core.is_compiled_with_cuda():
places.append(core.CUDAPlace(0))
for place in places:
self.check_with_place(place)
if __name__ == "__main__":
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册