From f83d1c0b0f77f4ff73aaecd89fca66e52e43116b Mon Sep 17 00:00:00 2001 From: zyfncg Date: Mon, 24 Jan 2022 11:14:07 +0800 Subject: [PATCH] Backward C++ API Code-Generation (#39057) * add config of backward-api auto-gene * fix compile bug * remove wrong header * rename grad_api to backward_api * modify .gitignore --- .gitignore | 3 +- paddle/pten/api/CMakeLists.txt | 2 +- paddle/pten/api/backward/README.md | 1 + paddle/pten/api/include/kernel_signature.h | 10 + paddle/pten/api/lib/CMakeLists.txt | 25 +- paddle/pten/api/lib/api_declare.h | 3 - paddle/pten/api/lib/api_utils.h | 93 +++++ paddle/pten/infermeta/CMakeLists.txt | 1 + paddle/pten/infermeta/backward.cc | 28 ++ paddle/pten/infermeta/backward.h | 29 ++ python/paddle/utils/code_gen/api.yaml | 57 +-- python/paddle/utils/code_gen/api_gen.py | 308 +--------------- python/paddle/utils/code_gen/backward.yaml | 34 ++ .../paddle/utils/code_gen/backward_api_gen.py | 251 +++++++++++++ python/paddle/utils/code_gen/gen_utils.py | 338 ++++++++++++++++++ 15 files changed, 860 insertions(+), 323 deletions(-) create mode 100644 paddle/pten/api/backward/README.md create mode 100644 paddle/pten/api/lib/api_utils.h create mode 100644 paddle/pten/infermeta/backward.cc create mode 100644 paddle/pten/infermeta/backward.h create mode 100644 python/paddle/utils/code_gen/backward.yaml create mode 100644 python/paddle/utils/code_gen/backward_api_gen.py create mode 100644 python/paddle/utils/code_gen/gen_utils.py diff --git a/.gitignore b/.gitignore index 708126b3bb..e905833cae 100644 --- a/.gitignore +++ b/.gitignore @@ -4,7 +4,8 @@ paddle/fluid/API_DEV.spec paddle/fluid/API_PR.spec paddle/fluid/op_use_default_grad_maker_DEV.spec paddle/fluid/op_use_default_grad_maker_PR.spec -paddle/pten/api/*/api* +paddle/pten/api/*/api.* +paddle/pten/api/*/backward* paddle/pten/include/* paddle/pten/extension.h diff --git a/paddle/pten/api/CMakeLists.txt b/paddle/pten/api/CMakeLists.txt index a454ae807b..0491363eda 100644 --- a/paddle/pten/api/CMakeLists.txt +++ b/paddle/pten/api/CMakeLists.txt @@ -1,3 +1,3 @@ add_subdirectory(lib) -cc_library(pten_api SRCS all.cc DEPS pten_function_api utils_api) +cc_library(pten_api SRCS all.cc DEPS pten_function_api pten_bw_function_api utils_api) diff --git a/paddle/pten/api/backward/README.md b/paddle/pten/api/backward/README.md new file mode 100644 index 0000000000..bc934a975f --- /dev/null +++ b/paddle/pten/api/backward/README.md @@ -0,0 +1 @@ +The code files in this directory(paddle/pten/api/backward) are auto-generated when building PaddlePaddle. diff --git a/paddle/pten/api/include/kernel_signature.h b/paddle/pten/api/include/kernel_signature.h index d750b47ef8..b8e7b0d75b 100644 --- a/paddle/pten/api/include/kernel_signature.h +++ b/paddle/pten/api/include/kernel_signature.h @@ -115,4 +115,14 @@ using conj_kernel = void (*)(const DeviceContext&, const DenseTensor&, DenseTensor*); +/* -------------- Grad Kernel ----------------- */ +using matmul_grad_kernel = void (*)(const DeviceContext&, + const DenseTensor&, + const DenseTensor&, + const DenseTensor&, + bool, + bool, + DenseTensor*, + DenseTensor*); + } // namespace pten diff --git a/paddle/pten/api/lib/CMakeLists.txt b/paddle/pten/api/lib/CMakeLists.txt index 1c2b382392..1e645a68ed 100644 --- a/paddle/pten/api/lib/CMakeLists.txt +++ b/paddle/pten/api/lib/CMakeLists.txt @@ -14,18 +14,27 @@ cc_library(kernel_dispatch SRCS kernel_dispatch.cc DEPS pten_tensor pten_context cc_library(op_meta_info SRCS op_meta_info.cc DEPS pten_tensor) +# forward api file set(api_gen_file ${CMAKE_SOURCE_DIR}/python/paddle/utils/code_gen/api_gen.py) set(api_yaml_file ${CMAKE_SOURCE_DIR}/python/paddle/utils/code_gen/api.yaml) - set(api_header_file ${CMAKE_SOURCE_DIR}/paddle/pten/api/include/api.h) set(api_source_file ${CMAKE_SOURCE_DIR}/paddle/pten/api/lib/api.cc) set(api_header_file_tmp ${api_header_file}.tmp) set(api_source_file_tmp ${api_source_file}.tmp) +# backward api file +set(bw_api_gen_file ${CMAKE_SOURCE_DIR}/python/paddle/utils/code_gen/backward_api_gen.py) +set(bw_api_yaml_file ${CMAKE_SOURCE_DIR}/python/paddle/utils/code_gen/backward.yaml) +set(bw_api_header_file ${CMAKE_SOURCE_DIR}/paddle/pten/api/backward/backward_api.h) +set(bw_api_source_file ${CMAKE_SOURCE_DIR}/paddle/pten/api/lib/backward_api.cc) +set(bw_api_header_file_tmp ${bw_api_header_file}.tmp) +set(bw_api_source_file_tmp ${bw_api_source_file}.tmp) + if (NOT PYTHON_EXECUTABLE) find_package(PythonInterp REQUIRED) endif() +# generate forward api add_custom_command( OUTPUT ${api_header_file} ${api_source_file} COMMAND ${PYTHON_EXECUTABLE} -m pip install pyyaml @@ -39,5 +48,19 @@ add_custom_command( DEPENDS ${api_yaml_file} ${api_gen_file} VERBATIM) +# generate backward api +add_custom_command( + OUTPUT ${bw_api_header_file} ${bw_api_source_file} ${bw_api_header_file_tmp} ${bw_api_source_file_tmp} + COMMAND ${PYTHON_EXECUTABLE} ${bw_api_gen_file} + --backward_yaml_path ${bw_api_yaml_file} + --backward_header_path ${bw_api_header_file_tmp} + --backward_source_path ${bw_api_source_file_tmp} + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${bw_api_header_file_tmp} ${bw_api_header_file} + COMMAND ${CMAKE_COMMAND} -E copy_if_different ${bw_api_source_file_tmp} ${bw_api_source_file} + COMMENT "copy_if_different ${bw_api_header_file} ${bw_api_source_file}" + DEPENDS ${bw_api_yaml_file} ${bw_api_gen_file} + VERBATIM) + cc_library(utils_api SRCS utils.cc DEPS pten_tensor pten kernel_dispatch) cc_library(pten_function_api SRCS ${api_source_file} DEPS pten_tensor pten kernel_dispatch) +cc_library(pten_bw_function_api SRCS ${bw_api_source_file} DEPS pten_tensor pten kernel_dispatch backward_infermeta) diff --git a/paddle/pten/api/lib/api_declare.h b/paddle/pten/api/lib/api_declare.h index d29050c8ba..0023170714 100644 --- a/paddle/pten/api/lib/api_declare.h +++ b/paddle/pten/api/lib/api_declare.h @@ -17,8 +17,5 @@ limitations under the License. */ // api symbols declare, remove in the future #include "paddle/pten/api/lib/api_registry.h" -PT_DECLARE_API(Creation); -PT_DECLARE_API(Linalg); -PT_DECLARE_API(Manipulation); PT_DECLARE_API(Math); PT_DECLARE_API(Utils); diff --git a/paddle/pten/api/lib/api_utils.h b/paddle/pten/api/lib/api_utils.h new file mode 100644 index 0000000000..f3e7d74db1 --- /dev/null +++ b/paddle/pten/api/lib/api_utils.h @@ -0,0 +1,93 @@ +/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "paddle/pten/api/include/tensor.h" +#include "paddle/pten/api/lib/utils/storage.h" +#include "paddle/pten/core/convert_utils.h" +#include "paddle/pten/core/dense_tensor.h" + +namespace paddle { +namespace experimental { + +/* ------------------ for input ----------------------- */ + +inline std::shared_ptr TensorToDenseTensor( + const Tensor& tensor) { + return std::dynamic_pointer_cast(tensor.impl()); +} + +inline std::unique_ptr> TensorToDenseTensor( + const std::vector& tensors) { + auto pt_tensors = std::make_unique>(); + pt_tensors->reserve(tensors.size()); + + for (const auto& t : tensors) { + pt_tensors->push_back( + *std::dynamic_pointer_cast(t.impl())); + } + + return std::move(pt_tensors); +} + +/* ----------------- for infer_meta --------------------- */ + +inline const pten::DenseTensorMeta& GetDenseTensorMeta( + const pten::DenseTensor& tensor) { + return tensor.meta(); +} + +inline std::vector GetDenseTensorMeta( + const std::vector& tensors) { + std::vector metas; + metas.reserve(tensors.size()); + for (const auto& t : tensors) { + metas.push_back(t.meta()); + } + return metas; +} + +/* ------------------ for output ----------------------- */ + +inline pten::DenseTensor* SetKernelOutput(const pten::DenseTensorMeta& meta, + Backend backend, + Tensor* out) { + auto dense_tensor = std::make_shared( + pten::make_intrusive(pten::TransToFluidPlace(backend)), + meta); + out->set_impl(dense_tensor); + return dense_tensor.get(); +} + +inline std::vector SetKernelOutput( + const std::vector& metas, + Backend backend, + std::vector* out) { + size_t n = metas.size(); + out->reserve(n); + std::vector results(n); + for (size_t i = 0; i < n; ++i) { + auto tensor_ptr = std::make_shared( + pten::make_intrusive(pten::TransToFluidPlace(backend)), + metas[i]); + results[i] = tensor_ptr.get(); + out->emplace_back(); + out->back().set_impl(tensor_ptr); + } + return results; +} + +} // namespace experimental +} // namespace paddle diff --git a/paddle/pten/infermeta/CMakeLists.txt b/paddle/pten/infermeta/CMakeLists.txt index f92727f33f..8e50d9d2c9 100644 --- a/paddle/pten/infermeta/CMakeLists.txt +++ b/paddle/pten/infermeta/CMakeLists.txt @@ -1 +1,2 @@ cc_library(infermeta SRCS nullary.cc unary.cc binary.cc multiary.cc DEPS convert_utils) +cc_library(backward_infermeta SRCS backward.cc DEPS convert_utils) diff --git a/paddle/pten/infermeta/backward.cc b/paddle/pten/infermeta/backward.cc new file mode 100644 index 0000000000..5a66e8cd2e --- /dev/null +++ b/paddle/pten/infermeta/backward.cc @@ -0,0 +1,28 @@ +/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/pten/infermeta/backward.h" + +namespace pten { + +std::tuple MatmulGradInferMeta( + const DenseTensorMeta& x_meta, + const DenseTensorMeta& y_meta, + const DenseTensorMeta& out_grad_meta, + bool transpose_x, + bool transpose_y) { + return std::make_tuple(x_meta, y_meta); +} + +} // namespace pten diff --git a/paddle/pten/infermeta/backward.h b/paddle/pten/infermeta/backward.h new file mode 100644 index 0000000000..03bdb3a962 --- /dev/null +++ b/paddle/pten/infermeta/backward.h @@ -0,0 +1,29 @@ +/* Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include "paddle/pten/core/tensor_meta.h" + +namespace pten { + +std::tuple MatmulGradInferMeta( + const DenseTensorMeta& x_meta, + const DenseTensorMeta& y_meta, + const DenseTensorMeta& out_grad_meta, + bool transpose_x, + bool transpose_y); + +} // namespace pten diff --git a/python/paddle/utils/code_gen/api.yaml b/python/paddle/utils/code_gen/api.yaml index a0d7ce84f7..f37b45eef1 100644 --- a/python/paddle/utils/code_gen/api.yaml +++ b/python/paddle/utils/code_gen/api.yaml @@ -1,7 +1,7 @@ - api : add args : (const Tensor& x, const Tensor& y) output : Tensor - infer_meta : + infer_meta : func : ElementwiseInferMeta param : [x, y, -1] kernel : @@ -10,7 +10,7 @@ - api : cast args : (const Tensor& x, DataType out_dtype) output : Tensor - infer_meta : + infer_meta : func : CastInferMeta kernel : func : cast @@ -38,7 +38,7 @@ - api : divide args : (const Tensor& x, const Tensor& y) output : Tensor - infer_meta : + infer_meta : func : ElementwiseInferMeta param : [x, y, -1] kernel : @@ -47,31 +47,31 @@ - api : dot args : (const Tensor& x, const Tensor& y) output : Tensor - infer_meta : + infer_meta : func : DotInferMeta - kernel : + kernel : func : dot - api : empty args : (const ScalarArray& shape, DataType dtype=DataType::FLOAT32, Backend place=Backend::CPU, DataLayout layout=DataLayout::NCHW) output: Tensor - infer_meta : + infer_meta : func : CreateInferMeta param : [shape, dtype, layout] - kernel : + kernel : func : empty param : [shape] data_type : dtype backend : place layout : layout - + - api : empty_like args : (const Tensor& x, DataType dtype = DataType::UNDEFINED, Backend place = Backend::UNDEFINED, DataLayout layout = DataLayout::UNDEFINED) output: Tensor - infer_meta : + infer_meta : func : CreateLikeInferMeta param : [x, dtype, layout] - kernel : + kernel : func : empty_like param : [] data_type : dtype > x @@ -81,31 +81,31 @@ - api : flatten args : (const Tensor& x, int start_axis, int stop_axis) output : Tensor - infer_meta : + infer_meta : func : FlattenInferMeta - kernel : + kernel : func : flatten - api : full args : (const ScalarArray& shape, const Scalar& value, DataType dtype=DataType::FLOAT32, Backend place=Backend::CPU, DataLayout layout=DataLayout::NCHW) output: Tensor - infer_meta : + infer_meta : func : CreateInferMeta param : [shape, dtype, layout] - kernel : + kernel : func : full param : [shape, value] data_type : dtype backend : place layout : layout - + - api : full_like args : (const Tensor& x, const Scalar& value, DataType dtype = DataType::UNDEFINED, Backend place = Backend::UNDEFINED, DataLayout layout = DataLayout::UNDEFINED) output: Tensor - infer_meta : + infer_meta : func : CreateLikeInferMeta param : [x, dtype, layout] - kernel : + kernel : func : full_like param : [value] data_type : dtype > x @@ -115,24 +115,25 @@ - api : matmul args : (const Tensor& x, const Tensor& y, bool transpose_x = false, bool transpose_y = false) output : Tensor - infer_meta : + infer_meta : func : MatmulInferMeta - kernel : + kernel : func : matmul + backward : matmul_grad - api : mean args : (const Tensor& x, const std::vector& axis={}, bool keep_dim=false) output : Tensor - infer_meta : + infer_meta : func : ReduceInferMeta param: [x, axis, keep_dim] - kernel : + kernel : func : mean - api : multiply args : (const Tensor& x, const Tensor& y) output : Tensor - infer_meta : + infer_meta : func : ElementwiseInferMeta param : [x, y, -1] kernel : @@ -146,15 +147,15 @@ - api : reshape args : (const Tensor& x, const ScalarArray& shape) output : Tensor - infer_meta : + infer_meta : func : ReshapeInferMeta - kernel : + kernel : func : reshape - api : scale args : (const Tensor& x, const Scalar& scale, float bias, bool bias_after_scale) output : Tensor - infer_meta : + infer_meta : func : UnchangedInferMeta param : [x] kernel : @@ -163,7 +164,7 @@ - api : subtract args : (const Tensor& x, const Tensor& y) output : Tensor - infer_meta : + infer_meta : func : ElementwiseInferMeta param : [x, y, -1] kernel : @@ -172,10 +173,10 @@ - api : sum args : (const Tensor& x, const std::vector& axis={}, DataType dtype=DataType::UNDEFINED, bool keep_dim=false) output : Tensor - infer_meta : + infer_meta : func : ReduceInferMeta param: [x, axis, keep_dim, dtype] - kernel : + kernel : func : sum param : [x, axis, keep_dim, dtype] data_type : x diff --git a/python/paddle/utils/code_gen/api_gen.py b/python/paddle/utils/code_gen/api_gen.py index c994731585..6bb02ab9d4 100644 --- a/python/paddle/utils/code_gen/api_gen.py +++ b/python/paddle/utils/code_gen/api_gen.py @@ -1,11 +1,11 @@ # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. -# +# # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at -# +# # http://www.apache.org/licenses/LICENSE-2.0 -# +# # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. @@ -16,6 +16,8 @@ import os import yaml import argparse +import gen_utils + class API: prefix_tensor_name = 'dense_' @@ -23,12 +25,12 @@ class API: def __init__(self, api_item_yaml): self.api = api_item_yaml['api'] # args: - # inputs: + # inputs: # names : [], list of input names # attrs: # names : [], list of attribute names - # attr_info : { attr_name : (type, default_values)} - self.args = self.parse_args(api_item_yaml['args']) + # attr_info : { attr_name : (type, default_values)} + self.args = gen_utils.parse_args(self.api, api_item_yaml['args']) self.output = api_item_yaml['output'] self.is_base_api = True if 'invoke' in api_item_yaml: @@ -50,271 +52,29 @@ class API: if 'param' not in self.infer_meta: self.infer_meta['param'] = None - def parse_args(self, args_str): - inputs = {'names': []} - attrs = {'names': [], 'attr_info': {}} - args_str = args_str.strip() - assert args_str.startswith('(') and args_str.endswith(')'), \ - f"Args declaration should start with '(' and end with ')', please check the args of {self.api} in api.yaml." - args_str = args_str[1:-1] - args_list = args_str.split(',') - input_types = [ - 'const Tensor&', 'const Tensor &', 'const std::vector&', - 'const std::vector &' - ] - attr_types = ['const Scalar&', 'const Scalar &', 'const ScalarArray&', 'const ScalarArray &', \ - 'int', 'int32_t', 'int64_t', 'size_t', 'float', 'double', 'bool', \ - 'const std::vector&', 'Backend', 'DataLayout', 'DataType'] - args_declare_str = "" - args_define_str = "" - for item in args_list: - item = item.strip() - # match the input tensor - has_input = False - for in_type in input_types: - if item.startswith(in_type): - input_name = item[len(in_type):].strip() - assert len(input_name) > 0, \ - f"The input tensor name should not be empty. Please check the args of {self.api} in api.yaml." - inputs['names'].append(input_name) - args_declare_str = args_declare_str + in_type + ' ' + input_name + ', ' - args_define_str = args_define_str + in_type + ' ' + input_name + ', ' - has_input = True - break - if has_input: - continue - - # match the attribute - for attr_type in attr_types: - if item.startswith(attr_type): - attr_name = item[len(attr_type):].strip() - assert len(attr_name) > 0, \ - f"The attribute name should not be empty. Please check the args of {self.api} in api.yaml." - default_value = None - if '=' in attr_name: - attr_infos = attr_name.split('=') - attr_name = attr_infos[0].strip() - default_value = attr_infos[1].strip() - - default_value_str = "" if default_value is None else '=' + default_value - args_declare_str = args_declare_str + attr_type + ' ' + attr_name + default_value_str + ', ' - args_define_str = args_define_str + attr_type + ' ' + attr_name + ', ' - attrs['names'].append(attr_name) - attrs['attr_info'][attr_name] = (attr_type, default_value) - break - - args = { - 'inputs': inputs, - 'attrs': attrs, - 'args_declare': args_declare_str[:-2], - 'args_define': args_define_str[:-2] - } - return args - def gene_api_declaration(self): return f""" PADDLE_API {self.output} {self.api}({self.args['args_declare']}); """ - def gene_kernel_select(self, input_names, attrs, kernel): - - kernel_key_item_init = """ - Backend kernel_backend = Backend::UNDEFINED; - DataLayout kernel_layout = DataLayout::UNDEFINED; - DataType kernel_data_type = DataType::UNDEFINED; -""" - # Check the tensor options - attr_backend_count = 0 - attr_layout_count = 0 - attr_data_type_count = 0 - for attr_name in attrs['names']: - if attrs['attr_info'][attr_name][0] == 'Backend': - assert kernel['backend'] is not None, \ - f"{self.api} api: When there is a parameter with 'Backend' type in attributes, you must set backend of kernel manually." - attr_backend_count = attr_backend_count + 1 - if attrs['attr_info'][attr_name][0] == 'DataLayout': - assert kernel['layout'] is not None, \ - f"{self.api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually." - attr_layout_count = attr_layout_count + 1 - if attrs['attr_info'][attr_name][0] == 'DataType': - assert kernel['data_type'] is not None, \ - f"{self.api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually." - attr_data_type_count = attr_data_type_count + 1 - - # preprocess kernel configures - kernel_select_code = "" - if kernel['backend'] is not None: - if '>' in kernel['backend']: - vars_list = kernel['backend'].split('>') - assert len( - vars_list - ) == 2, f"{self.api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}." - assert (vars_list[0].strip() in attrs['names']) and (attrs['attr_info'][vars_list[0].strip()][0] == 'Backend'), \ - f"{self.api} api: When use '>' to set kernel backend, the first param should be a attribute with Backend type." - kernel_select_code = kernel_select_code + f""" - kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); -""" - - else: - args_str = "" - for ele in kernel['backend'].split(','): - args_str = args_str + ele.strip() + ', ' - kernel_select_code = kernel_select_code + f""" - kernel_backend = ParseBackend({args_str[:-2]}); -""" - - if kernel['layout'] is not None: - if '>' in kernel['layout']: - vars_list = kernel['layout'].split('>') - assert len( - vars_list - ) == 2, f"{self.api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}." - assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \ - f"{self.api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type." - kernel_select_code = kernel_select_code + f""" - kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); -""" - - else: - vars_list = kernel['layout'].split(',') - assert len( - vars_list - ) == 1, f"{self.api} api: The number of params to set layout must be 1, but received {len(vars_list)}." - kernel_select_code = kernel_select_code + f""" - kernel_layout = ParseLayout({vars_list[0].strip()}); -""" - - if kernel['data_type'] is not None: - if '>' in kernel['data_type']: - vars_list = kernel['data_type'].split('>') - assert len( - vars_list - ) == 2, f"{self.api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}." - assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \ - f"{self.api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type." - kernel_select_code = kernel_select_code + f""" - kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); -""" - - else: - vars_list = kernel['data_type'].split(',') - assert len( - vars_list - ) == 1, f"{self.api} api: The number of params to set data_type only allows 2, but received {len(vars_list)}." - kernel_select_code = kernel_select_code + f""" - kernel_data_type = ParseDataType({vars_list[0].strip()}); -""" - - if len(input_names) == 0: - assert attr_backend_count > 0 and attr_layout_count > 0 and attr_data_type_count > 0, \ - f"{self.api} api: When there is no input tensor, the args must have 'Backend', 'DataLayout' and 'DataType'." - - kernel_select_args = "" - for input_name in input_names: - kernel_select_args = kernel_select_args + input_name + ", " - - if len(kernel_select_args) > 2: - kernel_select_args = kernel_select_args[:-2] - - kernel_select_code = kernel_key_item_init + kernel_select_code - - if len(input_names) > 0: - kernel_select_code = kernel_select_code + f""" - if (kernel_backend == Backend::UNDEFINED - || kernel_layout == DataLayout::UNDEFINED - || kernel_data_type == DataType::UNDEFINED ) {{ - auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args}); - auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey(); - if (kernel_backend == Backend::UNDEFINED) {{ - kernel_backend = kernel_key.backend(); - }} - if (kernel_layout == DataLayout::UNDEFINED) {{ - kernel_layout = kernel_key.layout(); - }} - if (kernel_data_type == DataType::UNDEFINED) {{ - kernel_data_type = kernel_key.dtype(); - }} - }}""" - - kernel_select_code = kernel_select_code + f""" - auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError( - "{kernel['func']}", {{kernel_backend, kernel_layout, kernel_data_type}}); - VLOG(6) << "{self.api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]"; - VLOG(6) << "{self.api} API kernel: " << kernel;""" - - return kernel_select_code - - def gene_infer_meta(self, input_names, attr_names, infer_meta) -> str: - infer_meta_params = infer_meta['param'] if infer_meta[ - 'param'] is not None else input_names + attr_names - param_code = "" - for param in infer_meta_params: - if param in input_names: - param_code = param_code + "GetDenseTensorMeta(" + self.prefix_tensor_name + param + "), " - elif param in attr_names: - param_code = param_code + param + ", " - elif isinstance(param, str): - param_code = param_code + "\"" + param + "\", " - elif isinstance(param, bool): - param_code = param_code + str(param).lower() + ", " - else: - param_code = param_code + str(param) + ", " - - param_code = param_code[:-2] - return f""" - auto out_meta = pten::{infer_meta['func']}({param_code}); -""" - - def get_kernel_args(self, input_names, attrs, kernel_param): - input_tensor_code = "" - for input_name in input_names: - # set input code - input_tensor_code = input_tensor_code + f""" - auto {self.prefix_tensor_name}{input_name} = TensorToDenseTensor({input_name});""" - - attr_names = attrs['names'] - if kernel_param is None: - kernel_param = input_names + attr_names - - kernel_args = "*dev_ctx, " - for param in kernel_param: - if param in input_names: - kernel_args = kernel_args + "*" + self.prefix_tensor_name + param + ", " - elif param in attr_names: - # set attr for kernel_context - if 'ScalarArray' in attrs['attr_info'][param][0]: - param = 'pten::ScalarArray(' + param + ')' - elif 'Scalar' in attrs['attr_info'][param][0]: - param = 'pten::Scalar(' + param + ')' - kernel_args = kernel_args + param + ", " - elif isinstance(param, bool): - kernel_args = kernel_args + str(param).lower() + ", " - else: - kernel_args = kernel_args + str(param) + ", " - return input_tensor_code, kernel_args[:-2] - def gene_api_code(self): if self.is_base_api: - input_tensors, kernel_args = self.get_kernel_args( + input_tensors, kernel_args = gen_utils.get_kernel_args( self.args['inputs']['names'], self.args['attrs'], self.kernel['param']) + out_type, _ = gen_utils.parse_output(self.api, self.output) + outputs_args, output_create = gen_utils.gene_output(out_type) return f""" PADDLE_API {self.output} {self.api}({self.args["args_define"]}) {{ -{self.gene_kernel_select(self.args['inputs']['names'], self.args['attrs'], self.kernel)} +{gen_utils.gene_kernel_select(self.api, self.args['inputs']['names'], self.args['attrs'], self.kernel)} auto* dev_ctx = GetDeviceContextByBackend(kernel_backend); {input_tensors} -{self.gene_infer_meta(self.args['inputs']['names'], self.args['attrs']['names'], self.infer_meta)} - auto dense_out = std::make_shared( - pten::make_intrusive( - pten::TransToFluidPlace(kernel_backend)), - std::move(out_meta)); - - Tensor out; - out.set_impl(dense_out); +{gen_utils.gene_infer_meta(self.args['inputs']['names'], self.args['attrs']['names'], self.infer_meta)} +{output_create} auto* kernel_fn = kernel.GetVariadicKernelFn(); - (*kernel_fn)({kernel_args}, dense_out.get()); + (*kernel_fn)({kernel_args}, {outputs_args}); return out; }} @@ -330,6 +90,8 @@ PADDLE_API {self.output} {self.api}({self.args["args_define"]}) {{ def header_include(): return """ +#include + #include "paddle/pten/api/include/tensor.h" #include "paddle/pten/common/scalar.h" #include "paddle/pten/common/scalar_array.h" @@ -345,6 +107,7 @@ def source_include(header_file_path): #include "paddle/pten/api/include/kernel_signature.h" #include "paddle/pten/api/lib/api_registry.h" +#include "paddle/pten/api/lib/api_utils.h" #include "paddle/pten/api/lib/kernel_dispatch.h" #include "paddle/pten/api/lib/utils/storage.h" #include "paddle/pten/core/kernel_registry.h" @@ -358,9 +121,6 @@ def source_include(header_file_path): def api_register(): return """ -PT_REGISTER_API(Creation); -PT_REGISTER_API(Linalg); -PT_REGISTER_API(Manipulation); PT_REGISTER_API(Math); """ @@ -377,35 +137,6 @@ namespace experimental { """) -def tensor_to_densetensor(): - return """ - std::shared_ptr TensorToDenseTensor(const Tensor& tensor) { - return std::dynamic_pointer_cast(tensor.impl()); - } - - std::shared_ptr> TensorToDenseTensor(const std::vector& tensors) { - std::vector pt_tensors; - - for(auto & t : tensors) { - pt_tensors.push_back(*std::dynamic_pointer_cast(t.impl())); - } - return std::make_shared>(pt_tensors); - } - - const pten::DenseTensorMeta GetDenseTensorMeta(const std::shared_ptr & x) { - return x->meta(); - } - - const std::vector GetDenseTensorMeta(const std::shared_ptr>& x) { - std::vector metas; - for(auto& t : *x) { - metas.push_back(t.meta()); - } - return metas; - } -""" - - def generate_api(api_yaml_path, header_file_path, source_file_path): with open(api_yaml_path, 'r') as f: @@ -422,7 +153,6 @@ def generate_api(api_yaml_path, header_file_path, source_file_path): include_header_file = "paddle/pten/api/include/api.h" source_file.write(source_include(include_header_file)) source_file.write(namespace[0]) - source_file.write(tensor_to_densetensor()) for api in apis: api_code = API(api) @@ -443,7 +173,7 @@ def main(): description='Generate PaddlePaddle C++ API files') parser.add_argument( '--api_yaml_path', - help='path to yaml file directory', + help='path to api yaml file', default='python/paddle/utils/code_gen/api.yaml') parser.add_argument( '--api_header_path', diff --git a/python/paddle/utils/code_gen/backward.yaml b/python/paddle/utils/code_gen/backward.yaml new file mode 100644 index 0000000000..26da7ae2ad --- /dev/null +++ b/python/paddle/utils/code_gen/backward.yaml @@ -0,0 +1,34 @@ +- backward_api : matmul_grad + forward : matmul (const Tensor& x, const Tensor& y, bool transpose_x, bool transpose_y) -> Tensor(out) + args : (const Tensor& x, const Tensor& y, const Tensor& out_grad, bool transpose_x=false, bool transpose_y=false) + output : Tensor(x_grad), Tensor(y_grad) + infer_meta : + func : MatmulGradInferMeta + kernel : + func : matmul_grad + +- backward_api : scale_grad + forward : scale (const Tensor& x, const Scalar& scale, float bias, bool bias_after_scale) -> Tensor(out) + args : (const Tensor& out_grad, const Scalar& scale, float bias=0.0, bool bias_after_scale=true) + output : Tensor(x_grad) + invoke : scale(out_grad, scale, bias, bias_after_scale) + +# TODO(zhangyunfei) The config of double grad and triple grad will be supported in the future. +# +# - backward_api : matmul_double_grad +# forward : matmul_grad (const Tensor& x, const Tensor& y, const Tensor& out_grad, bool transpose_x, bool transpose_y) -> tuple(dx, dy) +# args : (const Tensor& x, const Tensor& y, const Tensor& out_grad, const Tensor& dx_grad, const Tensor& dy_grad, bool transpose_x, bool transpose_y) +# output : tuple // d2x, d2y, dout_grad +# infer_meta : +# func : MatmulDoubleGradInferMeta +# kernel : +# func : matmul_double_grad + +# - backward_api : matmul_triple_grad +# forward : matmul_double_grad (const Tensor& x, const Tensor& y, const Tensor& out_grad, const Tensor& dx_grad, const Tensor& dy_grad, bool transpose_x, bool transpose_y) -> tuple(d2x, d2y, dout_grad) +# args : (const Tensor& x, const Tensor& y, const Tensor& out_grad, const Tensor& dx_grad, const Tensor& dy_grad, const Tensor& d2x_grad, const Tensor& d2y_grad, const Tensor& dout_grad_grad, bool transpose_x, bool transpose_y) +# output : tuple // d3x, d3y, d2out_grad, ddx_grad, ddy_grad +# infer_meta : +# func : MatmulTripleGradInferMeta +# kernel : +# func : matmul_triple_grad diff --git a/python/paddle/utils/code_gen/backward_api_gen.py b/python/paddle/utils/code_gen/backward_api_gen.py new file mode 100644 index 0000000000..0cb14327f6 --- /dev/null +++ b/python/paddle/utils/code_gen/backward_api_gen.py @@ -0,0 +1,251 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import yaml +import argparse +import re + +import gen_utils + + +class BackwardAPI: + def __init__(self, backward_item_yaml): + self.backward_api = backward_item_yaml['backward_api'] + self.args, self.output_type, self.return_comment = self.parse_and_check_args( + backward_item_yaml['forward'], backward_item_yaml['args'], + backward_item_yaml['output']) + + self.is_base_api = True + if 'invoke' in backward_item_yaml: + self.is_base_api = False + self.invoke = backward_item_yaml['invoke'] + else: + self.kernel = backward_item_yaml['kernel'] + if 'backend' not in self.kernel or len(self.kernel['backend']) == 0: + self.kernel['backend'] = None + if 'layout' not in self.kernel or len(self.kernel['layout']) == 0: + self.kernel['layout'] = None + if 'data_type' not in self.kernel or len(self.kernel[ + 'data_type']) == 0: + self.kernel['data_type'] = None + if 'param' not in self.kernel or len(self.kernel['param']) == 0: + self.kernel['param'] = None + + self.infer_meta = backward_item_yaml['infer_meta'] + if 'param' not in self.infer_meta or len(self.infer_meta[ + 'param']) == 0: + self.infer_meta['param'] = None + + def parse_forward_config(self, forward_config): + # api_name (const Tensor& input, ... , int attr, ...) -> Tensor(out) + result = re.search( + r"(?P[a-z][a-z0-9_]+)\s*(?P\([^\)]+\))\s*->[^\(]*\((?P[^\)]+)\)", + forward_config) + api = result.group('api') + outputs = [item.strip() for item in result.group('outputs').split(',')] + forward_args = gen_utils.parse_args(api, result.group('args')) + + return api, forward_args['inputs'], forward_args['attrs'], outputs + + def parse_and_check_args(self, forward_config, args_config, output_config): + # parse the forward and backward config + _, fw_inputs, fw_attrs, fw_outputs = self.parse_forward_config( + forward_config) + bw_args = gen_utils.parse_args(self.backward_api, args_config) + + # check the inputs of backward + for input in bw_args['inputs']['names']: + if input not in fw_inputs and input not in fw_outputs: + if input.endswith('_grad'): + original_name = input[:-5] + assert original_name in fw_outputs, \ + f"{self.backward_api} : Input Tensor error: the input tensor({input}) of backward should be an input or output or grad of output in forward api. \ + Please check the forward of {self.backward_api} in yaml." + + # check the attributes of backward + for attr in bw_args['attrs']['names']: + assert attr in fw_attrs['names'] and bw_args['attrs']['attr_info'][attr][0] == fw_attrs['attr_info'][attr][0], \ + f"{self.backward_api} : Attribute error: The attribute({attr}) of backward isn't consistent with forward api. \ + Please check the args of {self.backward_api} in yaml." + + # check the output of backward + output_type, return_comment = gen_utils.parse_output(self.backward_api, + output_config) + assert output_type.count('Tensor') <= len(fw_inputs['names']), \ + f"{self.backward_api} : Output error: The number of ouputs should be less then the number of inputs of forward api. \ + Please check the output of {self.backward_api} in yaml." + + return bw_args, output_type, return_comment + + def gene_api_declaration(self): + if self.return_comment: + return f""" +// {self.return_comment} +{self.output_type} {self.backward_api}({self.args['args_declare']}); +""" + + else: + return f""" +{self.output_type} {self.backward_api}({self.args['args_declare']}); +""" + + def gene_api_code(self): + if self.is_base_api: + input_tensors, kernel_args = gen_utils.get_kernel_args( + self.args['inputs']['names'], self.args['attrs'], + self.kernel['param']) + outputs_args, output_create = gen_utils.gene_output( + self.output_type) + return f""" +// {self.return_comment} +{self.output_type} {self.backward_api}({self.args["args_define"]}) {{ +{gen_utils.gene_kernel_select(self.backward_api, self.args['inputs']['names'], self.args['attrs'], self.kernel)} + + auto* dev_ctx = GetDeviceContextByBackend(kernel_backend); +{input_tensors} +{gen_utils.gene_infer_meta(self.args['inputs']['names'], self.args['attrs']['names'], self.infer_meta)} +{output_create} + + auto* kernel_fn = kernel.GetVariadicKernelFn(); + (*kernel_fn)({kernel_args}, {outputs_args}); + + return out; +}} +""" + + else: + inveke_func_name = self.invoke.split('(')[0].strip() + if inveke_func_name in self.args['attrs']['names']: + # Adjust the param whose name is same with api invoked. + pattern = '\W' + inveke_func_name + '[^A-Za-z0-9_(]' + + def adjust_name(matched): + matched_str = matched.group() + return matched_str[0:-1] + '_val' + matched_str[-1] + + invoke_code = re.sub(pattern, adjust_name, self.invoke) + params_code = re.sub(pattern, adjust_name, + self.args["args_define"]) + else: + invoke_code = self.invoke + params_code = self.args["args_define"] + return f""" +// {self.return_comment} +{self.output_type} {self.backward_api}({params_code}) {{ + return {invoke_code}; +}} +""" + + +def header_include(): + return """ +#include + +#include "paddle/pten/api/include/tensor.h" +#include "paddle/pten/common/scalar.h" +#include "paddle/pten/common/scalar_array.h" +""" + + +def source_include(header_file_path): + return f""" +#include "{header_file_path}" +#include + +#include "glog/logging.h" + +#include "paddle/pten/api/include/kernel_signature.h" +#include "paddle/pten/api/lib/api_registry.h" +#include "paddle/pten/api/lib/api_utils.h" +#include "paddle/pten/api/lib/kernel_dispatch.h" +#include "paddle/pten/api/lib/utils/storage.h" +#include "paddle/pten/core/kernel_registry.h" +#include "paddle/pten/api/include/api.h" +#include "paddle/pten/infermeta/backward.h" +""" + + +def backward_api_namespace(): + return (""" +namespace paddle { +namespace experimental { + +""", """ + +} // namespace experimental +} // namespace paddle +""") + + +def generate_backward_api(backward_yaml_path, header_file_path, + source_file_path): + + with open(backward_yaml_path, 'r') as f: + bw_apis = yaml.load(f, Loader=yaml.FullLoader) + header_file = open(header_file_path, 'w') + source_file = open(source_file_path, 'w') + + namespace = backward_api_namespace() + + header_file.write("#pragma once\n") + header_file.write(header_include()) + header_file.write(namespace[0]) + + include_header_file = "paddle/pten/api/backward/backward_api.h" + source_file.write(source_include(include_header_file)) + source_file.write(namespace[0]) + + for bw_api in bw_apis: + bw_api = BackwardAPI(bw_api) + # print(api_code.gene_api_declaration()) + header_file.write(bw_api.gene_api_declaration()) + source_file.write(bw_api.gene_api_code()) + + header_file.write(namespace[1]) + source_file.write(namespace[1]) + + header_file.close() + source_file.close() + + +def main(): + parser = argparse.ArgumentParser( + description='Generate PaddlePaddle C++ backward API files') + parser.add_argument( + '--backward_yaml_path', + help='path to backward yaml file', + default='python/paddle/utils/code_gen/backward.yaml') + parser.add_argument( + '--backward_header_path', + help='output of generated backward header code file', + default='paddle/pten/api/backward/backward_api.h') + + parser.add_argument( + '--backward_source_path', + help='output of generated backward source code file', + default='paddle/pten/api/lib/backward_api.cc') + + options = parser.parse_args() + + backward_yaml_path = options.backward_yaml_path + header_file_path = options.backward_header_path + source_file_path = options.backward_source_path + + generate_backward_api(backward_yaml_path, header_file_path, + source_file_path) + + +if __name__ == '__main__': + main() diff --git a/python/paddle/utils/code_gen/gen_utils.py b/python/paddle/utils/code_gen/gen_utils.py new file mode 100644 index 0000000000..9d368c292b --- /dev/null +++ b/python/paddle/utils/code_gen/gen_utils.py @@ -0,0 +1,338 @@ +# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import re + +PREFIX_TENSOR_NAME = 'dense_' + + +def parse_args(api_name, args_str): + """ + Returns: + { inputs : { + names : [] // list of input names + input_info : { input_name : type } + } + attrs: { + names : [] // list of attribute names + attr_info : { attr_name : (type, default_value)} + } + args_declare : "str" // str of funtion params with default value. Example: (..., bool flag=false) + args_define : "str" // str of funtion params without default value. Example: (..., bool flag) + } + """ + inputs = {'names': [], 'input_info': {}} + attrs = {'names': [], 'attr_info': {}} + args_str = args_str.strip() + assert args_str.startswith('(') and args_str.endswith(')'), \ + f"Args declaration should start with '(' and end with ')', please check the args of {api_name} in yaml." + args_str = args_str[1:-1] + args_list = args_str.split(',') + input_types = [ + 'const Tensor&', 'const Tensor &', 'const std::vector&', + 'const std::vector &' + ] + attr_types = ['const Scalar&', 'const Scalar &', 'const ScalarArray&', 'const ScalarArray &', \ + 'int', 'int32_t', 'int64_t', 'size_t', 'float', 'double', 'bool', \ + 'const std::vector&', 'Backend', 'DataLayout', 'DataType'] + args_declare_str = "" + args_define_str = "" + + for item in args_list: + item = item.strip() + # match the input tensor + has_input = False + for in_type in input_types: + if item.startswith(in_type): + input_name = item[len(in_type):].strip() + assert len(input_name) > 0, \ + f"The input tensor name should not be empty. Please check the args of {api_name} in yaml." + assert len(attrs['names']) == 0, \ + f"The input Tensor should appear before attributes. please check the position of {api_name}:input({input_name}) in yaml" + + inputs['names'].append(input_name) + inputs['input_info'][input_name] = in_type + args_declare_str = args_declare_str + in_type + ' ' + input_name + ', ' + args_define_str = args_define_str + in_type + ' ' + input_name + ', ' + has_input = True + break + if has_input: + continue + + # match the attribute + for attr_type in attr_types: + if item.startswith(attr_type): + attr_name = item[len(attr_type):].strip() + assert len(attr_name) > 0, \ + f"The attribute name should not be empty. Please check the args of {api_name} in yaml." + default_value = None + if '=' in attr_name: + attr_infos = attr_name.split('=') + attr_name = attr_infos[0].strip() + default_value = attr_infos[1].strip() + + default_value_str = "" if default_value is None else '=' + default_value + args_declare_str = args_declare_str + attr_type + ' ' + attr_name + default_value_str + ', ' + args_define_str = args_define_str + attr_type + ' ' + attr_name + ', ' + attrs['names'].append(attr_name) + attrs['attr_info'][attr_name] = (attr_type, default_value) + break + + args = { + 'inputs': inputs, + 'attrs': attrs, + 'args_declare': args_declare_str[:-2], + 'args_define': args_define_str[:-2] + } + return args + + +def parse_output(api_name, output_config): + def parse_output_item(output_item): + alllowd_output_types = ['Tensor', 'std::vector'] + if re.search(r'\(\w*\)', output_item): + result = re.search( + r"(?P[a-zA-Z0-9_<>]+)\s*\((?P\w+)\)", + output_item) + out_type = result.group('out_type') + assert out_type in alllowd_output_types, \ + f"{api_name} : Output type error: the output type only support Tensor and std::vector, \ + but now is {out_type}." + + return out_type, result.group('name') + + else: + if output_item.strip() in alllowd_output_types: + return output_item.strip(), 'out' + else: + raise ValueError( + "{} : Output type error: the output type only support Tensor and std::vector, \ + but now is {}.".format(api_name, out_type)) + + temp_list = output_config.split(',') + + if len(temp_list) == 1: + out_type, out_name = parse_output_item(temp_list[0]) + return out_type, out_name + else: + out_type_list = [] + out_name_list = [] + for output_item in temp_list: + out_type, out_name = parse_output_item(output_item) + out_type_list.append(out_type) + out_name_list.append(out_name) + + return "std::tuple<" + ",".join(out_type_list) + ">", ", ".join( + out_name_list) + + +def gene_kernel_select(api, input_names, attrs, kernel) -> str: + + kernel_key_item_init = """ + Backend kernel_backend = Backend::UNDEFINED; + DataLayout kernel_layout = DataLayout::UNDEFINED; + DataType kernel_data_type = DataType::UNDEFINED; +""" + # Check the tensor options + attr_backend_count = 0 + attr_layout_count = 0 + attr_data_type_count = 0 + for attr_name in attrs['names']: + if attrs['attr_info'][attr_name][0] == 'Backend': + assert kernel['backend'] is not None, \ + f"{api} api: When there is a parameter with 'Backend' type in attributes, you must set backend of kernel manually." + attr_backend_count = attr_backend_count + 1 + if attrs['attr_info'][attr_name][0] == 'DataLayout': + assert kernel['layout'] is not None, \ + f"{api} api: When there is a parameter with 'DataLayout' type in attributes, you must set layout of kernel manually." + attr_layout_count = attr_layout_count + 1 + if attrs['attr_info'][attr_name][0] == 'DataType': + assert kernel['data_type'] is not None, \ + f"{api} api: When there is a parameter with 'DataType' type in attributes, you must set data_type of kernel manually." + attr_data_type_count = attr_data_type_count + 1 + + # preprocess kernel configures + kernel_select_code = "" + if kernel['backend'] is not None: + if '>' in kernel['backend']: + vars_list = kernel['backend'].split('>') + assert len( + vars_list + ) == 2, f"{api} api: The number of params to set backend with '>' only allows 2, but received {len(vars_list)}." + assert (vars_list[0].strip() in attrs['names']) and (attrs['attr_info'][vars_list[0].strip()][0] == 'Backend'), \ + f"{api} api: When use '>' to set kernel backend, the first param should be a attribute with Backend type." + kernel_select_code = kernel_select_code + f""" + kernel_backend = ParseBackendWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); +""" + + else: + args_str = "" + for ele in kernel['backend'].split(','): + args_str = args_str + ele.strip() + ', ' + kernel_select_code = kernel_select_code + f""" + kernel_backend = ParseBackend({args_str[:-2]}); +""" + + if kernel['layout'] is not None: + if '>' in kernel['layout']: + vars_list = kernel['layout'].split('>') + assert len( + vars_list + ) == 2, f"{api} api: The number of params to set layout with '>' only allows 2, but received {len(vars_list)}." + assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataLayout', \ + f"{api} api: When use '>' to set kernel layout, the first param should be a attribute with DataLayout type." + kernel_select_code = kernel_select_code + f""" + kernel_layout = ParseLayoutWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); +""" + + else: + vars_list = kernel['layout'].split(',') + assert len( + vars_list + ) == 1, f"{api} api: The number of params to set layout must be 1, but received {len(vars_list)}." + kernel_select_code = kernel_select_code + f""" + kernel_layout = ParseLayout({vars_list[0].strip()}); +""" + + if kernel['data_type'] is not None: + if '>' in kernel['data_type']: + vars_list = kernel['data_type'].split('>') + assert len( + vars_list + ) == 2, f"{api} api: The number of params to set data_type with '>' only allows 2, but received {len(vars_list)}." + assert vars_list[0].strip() in attrs['names'] and attrs['attr_info'][vars_list[0].strip()][0] == 'DataType', \ + f"{api} api: When use '>' to set kernel data_type, the first param should be a attribute with DataType type." + kernel_select_code = kernel_select_code + f""" + kernel_data_type = ParseDataTypeWithInputOrder({vars_list[0].strip()}, {vars_list[1].strip()}); +""" + + else: + vars_list = kernel['data_type'].split(',') + assert len( + vars_list + ) == 1, f"{api} api: The number of params to set data_type only allows 2, but received {len(vars_list)}." + kernel_select_code = kernel_select_code + f""" + kernel_data_type = ParseDataType({vars_list[0].strip()}); +""" + + if len(input_names) == 0: + assert attr_backend_count > 0 and attr_layout_count > 0 and attr_data_type_count > 0, \ + f"{api} api: When there is no input tensor, the args must have 'Backend', 'DataLayout' and 'DataType'." + + kernel_select_args = "" + for input_name in input_names: + kernel_select_args = kernel_select_args + input_name + ", " + + if len(kernel_select_args) > 2: + kernel_select_args = kernel_select_args[:-2] + + kernel_select_code = kernel_key_item_init + kernel_select_code + + if len(input_names) > 0: + kernel_select_code = kernel_select_code + f""" + if (kernel_backend == Backend::UNDEFINED + || kernel_layout == DataLayout::UNDEFINED + || kernel_data_type == DataType::UNDEFINED ) {{ + auto kernel_key_set = ParseKernelKeyByInputArgs({kernel_select_args}); + auto kernel_key = kernel_key_set.GetHigestPriorityKernelKey(); + if (kernel_backend == Backend::UNDEFINED) {{ + kernel_backend = kernel_key.backend(); + }} + if (kernel_layout == DataLayout::UNDEFINED) {{ + kernel_layout = kernel_key.layout(); + }} + if (kernel_data_type == DataType::UNDEFINED) {{ + kernel_data_type = kernel_key.dtype(); + }} + }}""" + + kernel_select_code = kernel_select_code + f""" + auto kernel = pten::KernelFactory::Instance().SelectKernelOrThrowError( + "{kernel['func']}", {{kernel_backend, kernel_layout, kernel_data_type}}); + VLOG(6) << "{api} API kernel key: [" << kernel_backend << ", " << kernel_layout << ", "<< kernel_data_type << "]"; + VLOG(6) << "{api} API kernel: " << kernel;""" + + return kernel_select_code + + +def gene_infer_meta(input_names, attr_names, infer_meta) -> str: + infer_meta_params = infer_meta['param'] if infer_meta[ + 'param'] is not None else input_names + attr_names + param_code = "" + for param in infer_meta_params: + if param in input_names: + param_code = param_code + "GetDenseTensorMeta(*" + PREFIX_TENSOR_NAME + param + "), " + elif param in attr_names: + param_code = param_code + param + ", " + elif isinstance(param, str): + param_code = param_code + "\"" + param + "\", " + elif isinstance(param, bool): + param_code = param_code + str(param).lower() + ", " + else: + param_code = param_code + str(param) + ", " + + param_code = param_code[:-2] + return f""" + auto out_meta = pten::{infer_meta['func']}({param_code}); +""" + + +def get_kernel_args(input_names, attrs, kernel_param): + input_tensor_code = "" + for input_name in input_names: + # set input code + input_tensor_code = input_tensor_code + f""" + auto {PREFIX_TENSOR_NAME}{input_name} = TensorToDenseTensor({input_name});""" + + attr_names = attrs['names'] + if kernel_param is None: + kernel_param = input_names + attr_names + + kernel_args = "*dev_ctx, " + for param in kernel_param: + if param in input_names: + kernel_args = kernel_args + "*" + PREFIX_TENSOR_NAME + param + ", " + elif param in attr_names: + # set attr for kernel_context + if 'ScalarArray' in attrs['attr_info'][param][0]: + param = 'pten::ScalarArray(' + param + ')' + elif 'Scalar' in attrs['attr_info'][param][0]: + param = 'pten::Scalar(' + param + ')' + kernel_args = kernel_args + param + ", " + elif isinstance(param, bool): + kernel_args = kernel_args + str(param).lower() + ", " + else: + kernel_args = kernel_args + str(param) + ", " + return input_tensor_code, kernel_args[:-2] + + +def gene_output(output_type): + kernel_output = "" + output_create = f""" + {output_type} out;""" + + if output_type == 'Tensor' or output_type == 'std::vector': + kernel_output = 'dense_out' + output_create = output_create + """ + auto dense_out = SetKernelOutput(out_meta, kernel_backend, &out);""" + elif re.match(r'std::tuple<.*>$', output_type): + out_num = output_type.count('Tensor') + for i in range(out_num): + kernel_output = kernel_output + f'dense_out_{i}, ' + output_create = output_create + f""" + auto dense_out_{i} = SetKernelOutput(std::get<{i}>(out_meta), kernel_backend, &std::get<{i}>(out));""" + + kernel_output = kernel_output[:-2] + + return kernel_output, output_create -- GitLab