Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f7765991
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
f7765991
编写于
3月 13, 2022
作者:
P
phlrain
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into add_some_yaml_config
上级
1694bcc8
1b0cecb7
变更
16
隐藏空白更改
内联
并排
Showing
16 changed file
with
1566 addition
and
1562 deletion
+1566
-1562
paddle/fluid/framework/infershape_utils.cc
paddle/fluid/framework/infershape_utils.cc
+2
-2
paddle/fluid/operators/gather_nd_op.cc
paddle/fluid/operators/gather_nd_op.cc
+0
-1
paddle/fluid/operators/softmax_op.cc
paddle/fluid/operators/softmax_op.cc
+2
-2
paddle/phi/core/meta_tensor.cc
paddle/phi/core/meta_tensor.cc
+2
-2
paddle/phi/core/meta_tensor.h
paddle/phi/core/meta_tensor.h
+1
-1
paddle/phi/infermeta/backward.cc
paddle/phi/infermeta/backward.cc
+15
-14
paddle/phi/infermeta/backward.h
paddle/phi/infermeta/backward.h
+6
-1
paddle/phi/infermeta/binary.cc
paddle/phi/infermeta/binary.cc
+452
-451
paddle/phi/infermeta/binary.h
paddle/phi/infermeta/binary.h
+57
-57
paddle/phi/infermeta/nullary.cc
paddle/phi/infermeta/nullary.cc
+18
-18
paddle/phi/infermeta/nullary.h
paddle/phi/infermeta/nullary.h
+9
-9
paddle/phi/infermeta/ternary.cc
paddle/phi/infermeta/ternary.cc
+153
-152
paddle/phi/infermeta/ternary.h
paddle/phi/infermeta/ternary.h
+21
-25
paddle/phi/infermeta/unary.cc
paddle/phi/infermeta/unary.cc
+730
-730
paddle/phi/infermeta/unary.h
paddle/phi/infermeta/unary.h
+97
-96
paddle/phi/kernels/funcs/matrix_inverse.h
paddle/phi/kernels/funcs/matrix_inverse.h
+1
-1
未找到文件。
paddle/fluid/framework/infershape_utils.cc
浏览文件 @
f7765991
...
...
@@ -249,13 +249,13 @@ class CompatMetaTensor : public phi::MetaTensor {
}
void
share_meta
(
const
MetaTensor
&
meta_tensor
)
override
{
share_dims
(
meta_tensor
);
set_dtype
(
meta_tensor
.
dtype
());
// VarDesc doesn't contains layout, so we cannot share layout
// set_layout(meta_tensor.layout());
// special case
1
: share lod of LoDTensor
// special case: share lod of LoDTensor
share_lod
(
meta_tensor
);
share_dims
(
meta_tensor
);
}
private:
...
...
paddle/fluid/operators/gather_nd_op.cc
浏览文件 @
f7765991
...
...
@@ -16,7 +16,6 @@ limitations under the License. */
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/phi/infermeta/backward.h"
#include "paddle/phi/infermeta/binary.h"
#include "paddle/phi/infermeta/ternary.h"
namespace
paddle
{
namespace
operators
{
...
...
paddle/fluid/operators/softmax_op.cc
浏览文件 @
f7765991
...
...
@@ -215,7 +215,7 @@ REGISTER_OPERATOR(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker,
ops
::
SoftmaxOpGradMaker
<
paddle
::
framework
::
OpDesc
>
,
ops
::
SoftmaxOpGradMaker
<
paddle
::
imperative
::
OpBase
>
,
ops
::
SoftmaxInplaceInferer
,
SoftmaxInferShapeFunctor
);
DECLARE_INFER_SHAPE_FUNCTOR
(
softmax_grad
,
SoftmaxGradnferShapeFunctor
,
DECLARE_INFER_SHAPE_FUNCTOR
(
softmax_grad
,
SoftmaxGrad
I
nferShapeFunctor
,
PD_INFER_META
(
phi
::
GeneralUnaryGradInferMeta
));
REGISTER_OPERATOR
(
softmax_grad
,
ops
::
SoftmaxOpGrad
,
SoftmaxGradnferShapeFunctor
);
SoftmaxGrad
I
nferShapeFunctor
);
paddle/phi/core/meta_tensor.cc
浏览文件 @
f7765991
...
...
@@ -110,7 +110,7 @@ void MetaTensor::share_meta(const MetaTensor& meta_tensor) {
}
}
TensorBase
*
MetaTensor
::
get_
tensor
()
const
{
return
tensor_
;
}
TensorBase
*
MetaTensor
::
tensor
()
const
{
return
tensor_
;
}
void
MetaTensor
::
share_dims
(
const
MetaTensor
&
meta_tensor
)
{
bool
is_dense_tensor
=
phi
::
DenseTensor
::
classof
(
tensor_
);
...
...
@@ -118,7 +118,7 @@ void MetaTensor::share_dims(const MetaTensor& meta_tensor) {
if
(
is_dense_tensor
||
is_selected_rows
)
{
set_dims
(
meta_tensor
.
dims
());
if
(
is_selected_rows
)
{
const
auto
in_tensor_base
=
meta_tensor
.
get_
tensor
();
const
auto
in_tensor_base
=
meta_tensor
.
tensor
();
PADDLE_ENFORCE_EQ
(
phi
::
SelectedRows
::
classof
(
in_tensor_base
),
true
,
...
...
paddle/phi/core/meta_tensor.h
浏览文件 @
f7765991
...
...
@@ -66,7 +66,7 @@ class MetaTensor {
// Because the lod in compiletime and runtime is different,
// so `LoD` cannot in public methods
const
LoD
&
lod
()
const
;
TensorBase
*
get_
tensor
()
const
;
TensorBase
*
tensor
()
const
;
TensorBase
*
tensor_
;
};
...
...
paddle/phi/infermeta/backward.cc
浏览文件 @
f7765991
...
...
@@ -64,10 +64,14 @@ void BilinearTensorProductGradInferMeta(const MetaTensor& x,
}
}
void
GeneralUnaryGradInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
dx
)
{
if
(
dx
)
{
dx
->
share_meta
(
x
);
}
void
GatherNdGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
index
,
const
MetaTensor
&
out_grad
,
MetaTensor
*
x_grad
)
{
const
auto
&
dtype
=
out_grad
.
dtype
();
x_grad
->
set_dims
(
x
.
dims
());
x_grad
->
share_lod
(
x
);
x_grad
->
set_dtype
(
dtype
);
}
void
GeneralBinaryGradInferMeta
(
const
MetaTensor
&
x
,
...
...
@@ -99,6 +103,12 @@ void GeneralTernaryGradInferMeta(const MetaTensor& x,
}
}
void
GeneralUnaryGradInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
dx
)
{
if
(
dx
)
{
dx
->
share_meta
(
x
);
}
}
void
GumbelSoftmaxGradInferMeta
(
const
MetaTensor
&
out
,
const
MetaTensor
&
dout
,
int
axis
,
...
...
@@ -108,17 +118,8 @@ void GumbelSoftmaxGradInferMeta(const MetaTensor& out,
dout
.
dims
(),
errors
::
InvalidArgument
(
"Input(Out) and its gradients should have the same shape."
));
dx
->
share_meta
(
dout
);
}
void
GatherNdGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
index
,
const
MetaTensor
&
out_grad
,
MetaTensor
*
x_grad
)
{
const
auto
&
dtype
=
out_grad
.
dtype
();
x_grad
->
set_dims
(
x
.
dims
());
x_grad
->
share_lod
(
x
);
x_grad
->
set_dtype
(
dtype
);
dx
->
share_meta
(
dout
);
}
void
PsroiPoolGradInferMeta
(
const
MetaTensor
&
x
,
...
...
paddle/phi/infermeta/backward.h
浏览文件 @
f7765991
...
...
@@ -30,7 +30,10 @@ void BilinearTensorProductGradInferMeta(const MetaTensor& x,
MetaTensor
*
dweight
,
MetaTensor
*
dbias
);
void
GeneralUnaryGradInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
dx
);
void
GatherNdGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
index
,
const
MetaTensor
&
out_grad
,
MetaTensor
*
x_grad
);
void
GeneralBinaryGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
...
...
@@ -44,6 +47,8 @@ void GeneralTernaryGradInferMeta(const MetaTensor& x,
MetaTensor
*
dy
,
MetaTensor
*
dz
);
void
GeneralUnaryGradInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
dx
);
void
GumbelSoftmaxGradInferMeta
(
const
MetaTensor
&
out
,
const
MetaTensor
&
dout
,
int
axis
,
...
...
paddle/phi/infermeta/binary.cc
浏览文件 @
f7765991
...
...
@@ -22,6 +22,153 @@ limitations under the License. */
namespace
phi
{
void
Atan2InferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
out
)
{
out
->
share_meta
(
x
);
}
void
BCELossInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
input_dims
=
input
.
dims
();
auto
label_dims
=
label
.
dims
();
int
rank
=
input_dims
.
size
();
PADDLE_ENFORCE_EQ
(
rank
,
label_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"Input(X) and Input(Label) shall have the same rank."
"But received: the rank of Input(X) is [%d], "
"the rank of Input(Label) is [%d]."
,
rank
,
label_dims
.
size
()));
bool
check
=
true
;
if
((
!
config
.
is_runtime
)
&&
(
phi
::
product
(
input_dims
)
<=
0
||
phi
::
product
(
label_dims
)
<=
0
))
{
check
=
false
;
}
if
(
check
)
{
PADDLE_ENFORCE_EQ
(
input_dims
,
label_dims
,
phi
::
errors
::
InvalidArgument
(
"Input(X) and Input(Label) shall have the same "
"shape. But received: the shape of Input(X) is "
"[%s], the shape of Input(Label) is [%s]."
,
input_dims
,
label_dims
));
}
out
->
set_dims
(
input_dims
);
out
->
set_dtype
(
input
.
dtype
());
out
->
share_lod
(
input
);
}
void
BincountInferMeta
(
const
MetaTensor
&
x
,
const
paddle
::
optional
<
const
MetaTensor
&>
weights
,
int
minlength
,
MetaTensor
*
out
)
{
auto
input_dim
=
x
.
dims
();
PADDLE_ENFORCE_GE
(
minlength
,
0
,
phi
::
errors
::
InvalidArgument
(
"The minlength should be greater than or equal to 0."
"But received minlength is %d"
,
minlength
));
PADDLE_ENFORCE_EQ
(
input_dim
.
size
(),
1
,
phi
::
errors
::
InvalidArgument
(
"The 'shape' of Input(X) must be 1-D tensor."
"But the dimension of Input(X) is [%d]"
,
input_dim
.
size
()));
if
(
weights
.
is_initialized
())
{
auto
weights_dim
=
weights
->
dims
();
PADDLE_ENFORCE_EQ
(
weights_dim
.
size
(),
1
,
phi
::
errors
::
InvalidArgument
(
"The 'shape' of Input(Weights) must be 1-D tensor."
"But the dimension of Input(Weights) is [%d]"
,
weights_dim
.
size
()));
PADDLE_ENFORCE_EQ
(
weights_dim
[
0
],
input_dim
[
0
],
phi
::
errors
::
InvalidArgument
(
"The 'shape' of Input(Weights) must be equal to the 'shape' of "
"Input(X)."
"But received: the 'shape' of Input(Weights) is [%s],"
"the 'shape' of Input(X) is [%s]"
,
weights_dim
,
input_dim
));
}
out
->
set_dims
(
phi
::
make_ddim
({
-
1
}));
if
(
weights
.
is_initialized
())
{
out
->
set_dtype
(
weights
->
dtype
());
}
else
{
out
->
set_dtype
(
x
.
dtype
());
}
out
->
share_lod
(
x
);
}
void
CholeskySolveInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
bool
upper
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
auto
x_dims_n
=
x_dims
.
size
();
auto
y_dims_n
=
y_dims
.
size
();
PADDLE_ENFORCE_GE
(
x_dims_n
,
2
,
phi
::
errors
::
InvalidArgument
(
"the rank of input Y must greater or equal to 2"
));
PADDLE_ENFORCE_GE
(
y_dims_n
,
2
,
phi
::
errors
::
InvalidArgument
(
"the rank of input X must greater or equal to 2"
));
PADDLE_ENFORCE_EQ
(
y_dims
[
y_dims_n
-
1
],
y_dims
[
y_dims_n
-
2
],
phi
::
errors
::
InvalidArgument
(
"input Matrix Y should be square matrix,"
"But Got last shape of %ld x %ld"
,
y_dims
[
y_dims_n
-
1
],
y_dims
[
y_dims_n
-
2
]));
PADDLE_ENFORCE_EQ
(
x_dims
[
x_dims_n
-
2
],
y_dims
[
y_dims_n
-
2
],
phi
::
errors
::
InvalidArgument
(
"the first dim of Matrix X must be equal to "
"the fisrt dim of Matrix Y,"
"But Got %ld and %ld"
,
x_dims
[
x_dims_n
-
2
],
y_dims
[
y_dims_n
-
2
]));
std
::
vector
<
int64_t
>
x_dims_vec
=
phi
::
vectorize
(
x_dims
);
std
::
vector
<
int64_t
>
y_dims_vec
=
phi
::
vectorize
(
y_dims
);
std
::
vector
<
int64_t
>
x_dims_vec_cut
(
x_dims_vec
.
begin
(),
x_dims_vec
.
end
()
-
2
);
std
::
vector
<
int64_t
>
y_dims_vec_cut
(
y_dims_vec
.
begin
(),
y_dims_vec
.
end
()
-
2
);
std
::
vector
<
int64_t
>
expand_batch_portion
=
funcs
::
MatrixGetBroadcastBatchPortion
(
x_dims_vec_cut
,
y_dims_vec_cut
);
std
::
vector
<
int64_t
>
x_broadcast_dims
({
expand_batch_portion
});
x_broadcast_dims
.
insert
(
x_broadcast_dims
.
end
(),
{
x_dims_vec
[
x_dims_n
-
2
],
x_dims_vec
[
x_dims_n
-
1
]});
// dim of 'out' is the same with 'X' after broadcast
out
->
set_dims
(
phi
::
make_ddim
(
x_broadcast_dims
));
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
x
.
layout
());
out
->
share_lod
(
x
);
}
void
CompareInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
int
axis
,
...
...
@@ -67,6 +214,74 @@ void CompareAllInferMeta(const MetaTensor& x,
out
->
set_dtype
(
DataType
::
BOOL
);
}
void
CrossInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
int
axis
,
MetaTensor
*
out
)
{
auto
x_dim
=
x
.
dims
();
auto
y_dim
=
y
.
dims
();
auto
dim
=
axis
;
bool
dims_match
=
phi
::
funcs
::
CheckDims
(
x_dim
,
y_dim
);
PADDLE_ENFORCE_EQ
(
dims_match
,
true
,
phi
::
errors
::
InvalidArgument
(
"The 'shape' of Input(X) should be equal to "
"the 'shape' of Input(Y). But received "
"Input(X).dimensions = [%s], "
"Input(Y).dimensions = [%s]"
,
x_dim
,
y_dim
));
if
(
dim
!=
DDim
::
kMaxRank
)
{
PADDLE_ENFORCE_EQ
(
dim
<
x_dim
.
size
()
&&
dim
>=
(
0
-
x_dim
.
size
()),
true
,
phi
::
errors
::
OutOfRange
(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d."
,
x_dim
.
size
(),
x_dim
.
size
()
-
1
,
dim
));
if
(
dim
<
0
)
{
dim
+=
x_dim
.
size
();
}
PADDLE_ENFORCE_EQ
(
x_dim
[
dim
]
==
3
&&
y_dim
[
dim
]
==
3
,
true
,
phi
::
errors
::
InvalidArgument
(
"Input(X/Y).dims()[dim] should be equal to 3."
"But received Input(X/Y).dims()[dim] = %d."
,
x_dim
[
dim
]));
}
out
->
set_dims
(
x_dim
);
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
x
.
layout
());
out
->
share_lod
(
x
);
}
void
DistInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
float
p
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
PADDLE_ENFORCE_NE
(
phi
::
product
(
x_dims
),
0
,
phi
::
errors
::
InvalidArgument
(
"The Input(X) has not been initialized properly. The "
"shape of Input(X) = [%s]."
,
x_dims
));
PADDLE_ENFORCE_NE
(
phi
::
product
(
y_dims
),
0
,
phi
::
errors
::
InvalidArgument
(
"The Input(Y) has not been initialized properly. The "
"shape of Input(Y) = [%s]."
,
y_dims
));
out
->
set_dims
({
1
});
out
->
set_dtype
(
x
.
dtype
());
}
void
DotInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
auto
x_rank
=
static_cast
<
size_t
>
(
x_dims
.
size
());
...
...
@@ -109,84 +324,11 @@ void DotInferMeta(const MetaTensor& x, const MetaTensor& y, MetaTensor* out) {
out
->
set_layout
(
x
.
layout
());
}
void
MatmulInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
bool
trans_x
,
bool
trans_y
,
MetaTensor
*
out
)
{
std
::
vector
<
int64_t
>
dims_x
=
phi
::
vectorize
(
x
.
dims
());
std
::
vector
<
int64_t
>
dims_y
=
phi
::
vectorize
(
y
.
dims
());
auto
ndims_x
=
dims_x
.
size
();
auto
ndims_y
=
dims_y
.
size
();
PADDLE_ENFORCE_GT
(
ndims_x
,
0UL
,
phi
::
errors
::
InvalidArgument
(
"The Input(x) dims size must be greater than 0,"
" but reviced dims size is 0. "
));
PADDLE_ENFORCE_GT
(
ndims_y
,
0UL
,
phi
::
errors
::
InvalidArgument
(
"The Input(y) dims size must be greater than 0,"
" but reviced dims size is 0. "
));
bool
x_broadcasted
=
false
,
y_broadcasted
=
false
;
if
(
ndims_x
==
1
)
{
dims_x
.
insert
(
dims_x
.
begin
(),
1
);
ndims_x
=
2
;
x_broadcasted
=
true
;
}
if
(
ndims_y
==
1
)
{
dims_y
.
push_back
(
1
);
ndims_y
=
2
;
y_broadcasted
=
true
;
}
size_t
M
,
N
;
if
(
trans_x
)
{
M
=
dims_x
[
ndims_x
-
1
];
}
else
{
M
=
dims_x
[
ndims_x
-
2
];
}
if
(
trans_y
)
{
N
=
dims_y
[
ndims_y
-
2
];
}
else
{
N
=
dims_y
[
ndims_y
-
1
];
}
std
::
vector
<
int64_t
>
new_dims
;
if
(
ndims_x
>
ndims_y
)
{
new_dims
.
assign
(
dims_x
.
begin
(),
dims_x
.
end
()
-
2
);
}
else
if
(
ndims_x
<
ndims_y
)
{
new_dims
.
assign
(
dims_y
.
begin
(),
dims_y
.
end
()
-
2
);
}
else
{
new_dims
.
reserve
(
ndims_x
);
for
(
size_t
i
=
0
;
i
<
ndims_x
-
2
;
++
i
)
{
new_dims
.
push_back
(
std
::
max
(
dims_x
[
i
],
dims_y
[
i
]));
}
}
if
(
!
x_broadcasted
)
{
new_dims
.
push_back
(
M
);
}
if
(
!
y_broadcasted
)
{
new_dims
.
push_back
(
N
);
}
if
(
x_broadcasted
&&
y_broadcasted
)
{
new_dims
.
push_back
(
1
);
}
auto
ddim_out
=
phi
::
make_ddim
(
new_dims
);
out
->
set_dims
(
ddim_out
);
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
x
.
layout
());
}
void
ElementwiseInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
out
)
{
return
ElementwiseRawInferMeta
(
x
,
y
,
-
1
,
std
::
move
(
out
));
}
void
ElementwiseInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
out
)
{
return
ElementwiseRawInferMeta
(
x
,
y
,
-
1
,
std
::
move
(
out
));
}
void
ElementwiseRawInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
...
...
@@ -223,383 +365,19 @@ void ElementwiseRawInferMeta(const MetaTensor& x,
funcs
::
GetBroadcastDimsArrays
(
x_dims
,
y_dims
,
x_dims_array
.
data
(),
y_dims_array
.
data
(),
out_dims_array
.
data
(),
max_dim
,
axis
);
auto
out_dims
=
phi
::
make_ddim
(
out_dims_array
);
out
->
set_dims
(
out_dims
);
}
else
{
out
->
set_dims
(
x
.
dims
());
}
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
x
.
layout
());
out
->
share_lod
(
x
);
}
void
HuberLossInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
float
delta
,
MetaTensor
*
out
,
MetaTensor
*
residual
,
MetaConfig
config
)
{
auto
input_dims
=
input
.
dims
();
auto
label_dims
=
label
.
dims
();
PADDLE_ENFORCE_EQ
(
input_dims
.
size
(),
label_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"Input(input) rank and Input(label) rank should be "
"same, but received input rank(%d) != label rank(%d)"
,
input_dims
.
size
(),
label_dims
.
size
()));
bool
contain_unknown_dim
=
phi
::
contain_unknown_dim
(
input_dims
)
||
phi
::
contain_unknown_dim
(
label_dims
);
if
(
config
.
is_runtime
||
!
contain_unknown_dim
)
{
PADDLE_ENFORCE_EQ
(
input_dims
,
label_dims
,
phi
::
errors
::
InvalidArgument
(
"The Input(input) and Input(label) should have the same "
"shape, but received input shape [%s] != label shape [%s]"
,
input_dims
,
label_dims
));
}
auto
out_dims
=
label_dims
;
residual
->
set_dims
(
out_dims
);
out
->
set_dims
(
out_dims
);
out
->
share_lod
(
input
);
}
void
CholeskySolveInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
bool
upper
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
auto
x_dims_n
=
x_dims
.
size
();
auto
y_dims_n
=
y_dims
.
size
();
PADDLE_ENFORCE_GE
(
x_dims_n
,
2
,
phi
::
errors
::
InvalidArgument
(
"the rank of input Y must greater or equal to 2"
));
PADDLE_ENFORCE_GE
(
y_dims_n
,
2
,
phi
::
errors
::
InvalidArgument
(
"the rank of input X must greater or equal to 2"
));
PADDLE_ENFORCE_EQ
(
y_dims
[
y_dims_n
-
1
],
y_dims
[
y_dims_n
-
2
],
phi
::
errors
::
InvalidArgument
(
"input Matrix Y should be square matrix,"
"But Got last shape of %ld x %ld"
,
y_dims
[
y_dims_n
-
1
],
y_dims
[
y_dims_n
-
2
]));
PADDLE_ENFORCE_EQ
(
x_dims
[
x_dims_n
-
2
],
y_dims
[
y_dims_n
-
2
],
phi
::
errors
::
InvalidArgument
(
"the first dim of Matrix X must be equal to "
"the fisrt dim of Matrix Y,"
"But Got %ld and %ld"
,
x_dims
[
x_dims_n
-
2
],
y_dims
[
y_dims_n
-
2
]));
std
::
vector
<
int64_t
>
x_dims_vec
=
phi
::
vectorize
(
x_dims
);
std
::
vector
<
int64_t
>
y_dims_vec
=
phi
::
vectorize
(
y_dims
);
std
::
vector
<
int64_t
>
x_dims_vec_cut
(
x_dims_vec
.
begin
(),
x_dims_vec
.
end
()
-
2
);
std
::
vector
<
int64_t
>
y_dims_vec_cut
(
y_dims_vec
.
begin
(),
y_dims_vec
.
end
()
-
2
);
std
::
vector
<
int64_t
>
expand_batch_portion
=
funcs
::
MatrixGetBroadcastBatchPortion
(
x_dims_vec_cut
,
y_dims_vec_cut
);
std
::
vector
<
int64_t
>
x_broadcast_dims
({
expand_batch_portion
});
x_broadcast_dims
.
insert
(
x_broadcast_dims
.
end
(),
{
x_dims_vec
[
x_dims_n
-
2
],
x_dims_vec
[
x_dims_n
-
1
]});
// dim of 'out' is the same with 'X' after broadcast
out
->
set_dims
(
phi
::
make_ddim
(
x_broadcast_dims
));
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
x
.
layout
());
out
->
share_lod
(
x
);
}
void
TriangularSolveInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
bool
upper
,
bool
transpose
,
bool
unitriangular
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
auto
x_dims_n
=
x_dims
.
size
();
auto
y_dims_n
=
y_dims
.
size
();
PADDLE_ENFORCE_GE
(
x_dims_n
,
2
,
phi
::
errors
::
InvalidArgument
(
"The input tensor X's dimensions of TriangularSolveOp "
"should be >= 2. But received X's "
"dimensions = %d, X's shape = [%s]"
,
x_dims
.
size
(),
x_dims
));
PADDLE_ENFORCE_GE
(
y_dims_n
,
2
,
phi
::
errors
::
InvalidArgument
(
"The input tensor Y's dimensions of TriangularSolveOp "
"should be >=2. But received Y's "
"dimensions = %d, Y's shape = [%s]"
,
y_dims
.
size
(),
y_dims
));
PADDLE_ENFORCE_EQ
(
x_dims
[
x_dims_n
-
2
],
x_dims
[
x_dims_n
-
1
],
phi
::
errors
::
InvalidArgument
(
"The inner-most 2 dimensions of Input(X) all should "
"be square matrices "
"But received X's shape[-2] = %d and shape[-1] = %d."
,
x_dims
[
x_dims_n
-
2
],
x_dims
[
x_dims_n
-
1
]));
std
::
vector
<
int64_t
>
x_dims_vec
=
phi
::
vectorize
(
x_dims
);
std
::
vector
<
int64_t
>
y_dims_vec
=
phi
::
vectorize
(
y_dims
);
std
::
vector
<
int64_t
>
x_dims_vec_cut
(
x_dims_vec
.
begin
(),
x_dims_vec
.
end
()
-
2
);
std
::
vector
<
int64_t
>
y_dims_vec_cut
(
y_dims_vec
.
begin
(),
y_dims_vec
.
end
()
-
2
);
std
::
vector
<
int64_t
>
expand_batch_portion
=
funcs
::
MatrixGetBroadcastBatchPortion
(
x_dims_vec_cut
,
y_dims_vec_cut
);
std
::
vector
<
int64_t
>
y_broadcast_dims
({
expand_batch_portion
});
y_broadcast_dims
.
insert
(
y_broadcast_dims
.
end
(),
{
y_dims_vec
[
y_dims_n
-
2
],
y_dims_vec
[
y_dims_n
-
1
]});
// dim of 'out' is the same with 'Y' after broadcast
out
->
set_dims
(
phi
::
make_ddim
(
y_broadcast_dims
));
out
->
set_dtype
(
y
.
dtype
());
out
->
set_layout
(
y
.
layout
());
out
->
share_lod
(
y
);
}
void
IndexSampleInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
input_dims
=
x
.
dims
();
PADDLE_ENFORCE_EQ
(
input_dims
.
size
(),
2
,
errors
::
InvalidArgument
(
"Inputs(X) shape of IndexSample op should be 2-D, but "
"got X's shape = [%s], please check X shape."
,
input_dims
));
auto
index_dims
=
y
.
dims
();
PADDLE_ENFORCE_EQ
(
index_dims
.
size
(),
2
,
errors
::
InvalidArgument
(
"Inputs(Index) shape of IndexSample op should be 2-D, but "
"got Index's shape [%s] , please check index shape."
,
input_dims
));
if
(
config
.
is_runtime
)
{
PADDLE_ENFORCE_EQ
(
input_dims
[
0
],
index_dims
[
0
],
errors
::
InvalidArgument
(
"Inputs(X)'s value of dimension 0 must same with "
"Inputs(Index)'s value of dimension 0, but "
"got %d of Inputs(X), and got %d of Inputs(Index), "
"please check Inputs shape."
,
input_dims
[
0
],
index_dims
[
0
]));
}
out
->
set_dtype
(
x
.
dtype
());
out
->
set_dims
(
index_dims
);
out
->
share_lod
(
y
);
}
void
CrossInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
int
axis
,
MetaTensor
*
out
)
{
auto
x_dim
=
x
.
dims
();
auto
y_dim
=
y
.
dims
();
auto
dim
=
axis
;
bool
dims_match
=
phi
::
funcs
::
CheckDims
(
x_dim
,
y_dim
);
PADDLE_ENFORCE_EQ
(
dims_match
,
true
,
phi
::
errors
::
InvalidArgument
(
"The 'shape' of Input(X) should be equal to "
"the 'shape' of Input(Y). But received "
"Input(X).dimensions = [%s], "
"Input(Y).dimensions = [%s]"
,
x_dim
,
y_dim
));
if
(
dim
!=
DDim
::
kMaxRank
)
{
PADDLE_ENFORCE_EQ
(
dim
<
x_dim
.
size
()
&&
dim
>=
(
0
-
x_dim
.
size
()),
true
,
phi
::
errors
::
OutOfRange
(
"Attr(dim) is out of range, It's expected "
"to be in range of [-%d, %d]. But received Attr(dim) = %d."
,
x_dim
.
size
(),
x_dim
.
size
()
-
1
,
dim
));
if
(
dim
<
0
)
{
dim
+=
x_dim
.
size
();
}
PADDLE_ENFORCE_EQ
(
x_dim
[
dim
]
==
3
&&
y_dim
[
dim
]
==
3
,
true
,
phi
::
errors
::
InvalidArgument
(
"Input(X/Y).dims()[dim] should be equal to 3."
"But received Input(X/Y).dims()[dim] = %d."
,
x_dim
[
dim
]));
}
out
->
set_dims
(
x_dim
);
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
x
.
layout
());
out
->
share_lod
(
x
);
}
void
Atan2InferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
out
)
{
out
->
share_meta
(
x
);
}
void
SegmentPoolInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
segment_ids
,
const
std
::
string
&
pooltype
,
MetaTensor
*
out
,
MetaTensor
*
summed_ids
,
MetaConfig
config
)
{
auto
dims
=
x
.
dims
();
dims
[
0
]
=
-
1
;
out
->
set_dims
(
dims
);
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
x
.
layout
());
if
(
pooltype
==
"MEAN"
)
{
summed_ids
->
set_dims
({
-
1
,
1
});
summed_ids
->
set_dtype
(
x
.
dtype
());
summed_ids
->
set_layout
(
x
.
layout
());
}
}
void
BCELossInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
input_dims
=
input
.
dims
();
auto
label_dims
=
label
.
dims
();
int
rank
=
input_dims
.
size
();
PADDLE_ENFORCE_EQ
(
rank
,
label_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"Input(X) and Input(Label) shall have the same rank."
"But received: the rank of Input(X) is [%d], "
"the rank of Input(Label) is [%d]."
,
rank
,
label_dims
.
size
()));
bool
check
=
true
;
if
((
!
config
.
is_runtime
)
&&
(
phi
::
product
(
input_dims
)
<=
0
||
phi
::
product
(
label_dims
)
<=
0
))
{
check
=
false
;
}
if
(
check
)
{
PADDLE_ENFORCE_EQ
(
input_dims
,
label_dims
,
phi
::
errors
::
InvalidArgument
(
"Input(X) and Input(Label) shall have the same "
"shape. But received: the shape of Input(X) is "
"[%s], the shape of Input(Label) is [%s]."
,
input_dims
,
label_dims
));
}
out
->
set_dims
(
input_dims
);
out
->
set_dtype
(
input
.
dtype
());
out
->
share_lod
(
input
);
}
void
BincountInferMeta
(
const
MetaTensor
&
x
,
const
paddle
::
optional
<
const
MetaTensor
&>
weights
,
int
minlength
,
MetaTensor
*
out
)
{
auto
input_dim
=
x
.
dims
();
PADDLE_ENFORCE_GE
(
minlength
,
0
,
phi
::
errors
::
InvalidArgument
(
"The minlength should be greater than or equal to 0."
"But received minlength is %d"
,
minlength
));
PADDLE_ENFORCE_EQ
(
input_dim
.
size
(),
1
,
phi
::
errors
::
InvalidArgument
(
"The 'shape' of Input(X) must be 1-D tensor."
"But the dimension of Input(X) is [%d]"
,
input_dim
.
size
()));
if
(
weights
.
is_initialized
())
{
auto
weights_dim
=
weights
->
dims
();
PADDLE_ENFORCE_EQ
(
weights_dim
.
size
(),
1
,
phi
::
errors
::
InvalidArgument
(
"The 'shape' of Input(Weights) must be 1-D tensor."
"But the dimension of Input(Weights) is [%d]"
,
weights_dim
.
size
()));
PADDLE_ENFORCE_EQ
(
weights_dim
[
0
],
input_dim
[
0
],
phi
::
errors
::
InvalidArgument
(
"The 'shape' of Input(Weights) must be equal to the 'shape' of "
"Input(X)."
"But received: the 'shape' of Input(Weights) is [%s],"
"the 'shape' of Input(X) is [%s]"
,
weights_dim
,
input_dim
));
}
out
->
set_dims
(
phi
::
make_ddim
({
-
1
}));
if
(
weights
.
is_initialized
())
{
out
->
set_dtype
(
weights
->
dtype
());
y_dims_array
.
data
(),
out_dims_array
.
data
(),
max_dim
,
axis
);
auto
out_dims
=
phi
::
make_ddim
(
out_dims_array
);
out
->
set_dims
(
out_dims
);
}
else
{
out
->
set_d
type
(
x
.
dtype
());
out
->
set_d
ims
(
x
.
dims
());
}
out
->
share_lod
(
x
);
}
void
DistInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
float
p
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
PADDLE_ENFORCE_NE
(
phi
::
product
(
x_dims
),
0
,
phi
::
errors
::
InvalidArgument
(
"The Input(X) has not been initialized properly. The "
"shape of Input(X) = [%s]."
,
x_dims
));
PADDLE_ENFORCE_NE
(
phi
::
product
(
y_dims
),
0
,
phi
::
errors
::
InvalidArgument
(
"The Input(Y) has not been initialized properly. The "
"shape of Input(Y) = [%s]."
,
y_dims
));
out
->
set_dims
({
1
});
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
x
.
layout
());
out
->
share_lod
(
x
);
}
void
GatherNdInferMeta
(
const
MetaTensor
&
x
,
...
...
@@ -648,6 +426,78 @@ void GatherTreeMeta(const MetaTensor& ids,
out
->
set_dims
(
ids_dims
);
}
void
HuberLossInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
float
delta
,
MetaTensor
*
out
,
MetaTensor
*
residual
,
MetaConfig
config
)
{
auto
input_dims
=
input
.
dims
();
auto
label_dims
=
label
.
dims
();
PADDLE_ENFORCE_EQ
(
input_dims
.
size
(),
label_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"Input(input) rank and Input(label) rank should be "
"same, but received input rank(%d) != label rank(%d)"
,
input_dims
.
size
(),
label_dims
.
size
()));
bool
contain_unknown_dim
=
phi
::
contain_unknown_dim
(
input_dims
)
||
phi
::
contain_unknown_dim
(
label_dims
);
if
(
config
.
is_runtime
||
!
contain_unknown_dim
)
{
PADDLE_ENFORCE_EQ
(
input_dims
,
label_dims
,
phi
::
errors
::
InvalidArgument
(
"The Input(input) and Input(label) should have the same "
"shape, but received input shape [%s] != label shape [%s]"
,
input_dims
,
label_dims
));
}
auto
out_dims
=
label_dims
;
residual
->
set_dims
(
out_dims
);
out
->
set_dims
(
out_dims
);
out
->
share_lod
(
input
);
}
void
IndexSampleInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
input_dims
=
x
.
dims
();
PADDLE_ENFORCE_EQ
(
input_dims
.
size
(),
2
,
errors
::
InvalidArgument
(
"Inputs(X) shape of IndexSample op should be 2-D, but "
"got X's shape = [%s], please check X shape."
,
input_dims
));
auto
index_dims
=
y
.
dims
();
PADDLE_ENFORCE_EQ
(
index_dims
.
size
(),
2
,
errors
::
InvalidArgument
(
"Inputs(Index) shape of IndexSample op should be 2-D, but "
"got Index's shape [%s] , please check index shape."
,
input_dims
));
if
(
config
.
is_runtime
)
{
PADDLE_ENFORCE_EQ
(
input_dims
[
0
],
index_dims
[
0
],
errors
::
InvalidArgument
(
"Inputs(X)'s value of dimension 0 must same with "
"Inputs(Index)'s value of dimension 0, but "
"got %d of Inputs(X), and got %d of Inputs(Index), "
"please check Inputs shape."
,
input_dims
[
0
],
index_dims
[
0
]));
}
out
->
set_dtype
(
x
.
dtype
());
out
->
set_dims
(
index_dims
);
out
->
share_lod
(
y
);
}
void
LogLossInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
float
epsilon
,
...
...
@@ -690,6 +540,79 @@ void LogLossInferMeta(const MetaTensor& input,
out
->
share_lod
(
input
);
}
void
MatmulInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
bool
trans_x
,
bool
trans_y
,
MetaTensor
*
out
)
{
std
::
vector
<
int64_t
>
dims_x
=
phi
::
vectorize
(
x
.
dims
());
std
::
vector
<
int64_t
>
dims_y
=
phi
::
vectorize
(
y
.
dims
());
auto
ndims_x
=
dims_x
.
size
();
auto
ndims_y
=
dims_y
.
size
();
PADDLE_ENFORCE_GT
(
ndims_x
,
0UL
,
phi
::
errors
::
InvalidArgument
(
"The Input(x) dims size must be greater than 0,"
" but reviced dims size is 0. "
));
PADDLE_ENFORCE_GT
(
ndims_y
,
0UL
,
phi
::
errors
::
InvalidArgument
(
"The Input(y) dims size must be greater than 0,"
" but reviced dims size is 0. "
));
bool
x_broadcasted
=
false
,
y_broadcasted
=
false
;
if
(
ndims_x
==
1
)
{
dims_x
.
insert
(
dims_x
.
begin
(),
1
);
ndims_x
=
2
;
x_broadcasted
=
true
;
}
if
(
ndims_y
==
1
)
{
dims_y
.
push_back
(
1
);
ndims_y
=
2
;
y_broadcasted
=
true
;
}
size_t
M
,
N
;
if
(
trans_x
)
{
M
=
dims_x
[
ndims_x
-
1
];
}
else
{
M
=
dims_x
[
ndims_x
-
2
];
}
if
(
trans_y
)
{
N
=
dims_y
[
ndims_y
-
2
];
}
else
{
N
=
dims_y
[
ndims_y
-
1
];
}
std
::
vector
<
int64_t
>
new_dims
;
if
(
ndims_x
>
ndims_y
)
{
new_dims
.
assign
(
dims_x
.
begin
(),
dims_x
.
end
()
-
2
);
}
else
if
(
ndims_x
<
ndims_y
)
{
new_dims
.
assign
(
dims_y
.
begin
(),
dims_y
.
end
()
-
2
);
}
else
{
new_dims
.
reserve
(
ndims_x
);
for
(
size_t
i
=
0
;
i
<
ndims_x
-
2
;
++
i
)
{
new_dims
.
push_back
(
std
::
max
(
dims_x
[
i
],
dims_y
[
i
]));
}
}
if
(
!
x_broadcasted
)
{
new_dims
.
push_back
(
M
);
}
if
(
!
y_broadcasted
)
{
new_dims
.
push_back
(
N
);
}
if
(
x_broadcasted
&&
y_broadcasted
)
{
new_dims
.
push_back
(
1
);
}
auto
ddim_out
=
phi
::
make_ddim
(
new_dims
);
out
->
set_dims
(
ddim_out
);
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
x
.
layout
());
}
void
MvInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
vec
,
MetaTensor
*
out
)
{
auto
dim_x
=
x
.
dims
();
auto
dim_vec
=
vec
.
dims
();
...
...
@@ -720,6 +643,25 @@ void MvInferMeta(const MetaTensor& x, const MetaTensor& vec, MetaTensor* out) {
out
->
share_lod
(
x
);
}
void
SegmentPoolInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
segment_ids
,
const
std
::
string
&
pooltype
,
MetaTensor
*
out
,
MetaTensor
*
summed_ids
,
MetaConfig
config
)
{
auto
dims
=
x
.
dims
();
dims
[
0
]
=
-
1
;
out
->
set_dims
(
dims
);
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
x
.
layout
());
if
(
pooltype
==
"MEAN"
)
{
summed_ids
->
set_dims
({
-
1
,
1
});
summed_ids
->
set_dtype
(
x
.
dtype
());
summed_ids
->
set_layout
(
x
.
layout
());
}
}
void
SigmoidCrossEntropyWithLogitsInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
label
,
bool
normalize
,
...
...
@@ -761,4 +703,63 @@ void SigmoidCrossEntropyWithLogitsInferMeta(const MetaTensor& x,
out
->
share_lod
(
x
);
}
void
TriangularSolveInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
bool
upper
,
bool
transpose
,
bool
unitriangular
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
auto
x_dims_n
=
x_dims
.
size
();
auto
y_dims_n
=
y_dims
.
size
();
PADDLE_ENFORCE_GE
(
x_dims_n
,
2
,
phi
::
errors
::
InvalidArgument
(
"The input tensor X's dimensions of TriangularSolveOp "
"should be >= 2. But received X's "
"dimensions = %d, X's shape = [%s]"
,
x_dims
.
size
(),
x_dims
));
PADDLE_ENFORCE_GE
(
y_dims_n
,
2
,
phi
::
errors
::
InvalidArgument
(
"The input tensor Y's dimensions of TriangularSolveOp "
"should be >=2. But received Y's "
"dimensions = %d, Y's shape = [%s]"
,
y_dims
.
size
(),
y_dims
));
PADDLE_ENFORCE_EQ
(
x_dims
[
x_dims_n
-
2
],
x_dims
[
x_dims_n
-
1
],
phi
::
errors
::
InvalidArgument
(
"The inner-most 2 dimensions of Input(X) all should "
"be square matrices "
"But received X's shape[-2] = %d and shape[-1] = %d."
,
x_dims
[
x_dims_n
-
2
],
x_dims
[
x_dims_n
-
1
]));
std
::
vector
<
int64_t
>
x_dims_vec
=
phi
::
vectorize
(
x_dims
);
std
::
vector
<
int64_t
>
y_dims_vec
=
phi
::
vectorize
(
y_dims
);
std
::
vector
<
int64_t
>
x_dims_vec_cut
(
x_dims_vec
.
begin
(),
x_dims_vec
.
end
()
-
2
);
std
::
vector
<
int64_t
>
y_dims_vec_cut
(
y_dims_vec
.
begin
(),
y_dims_vec
.
end
()
-
2
);
std
::
vector
<
int64_t
>
expand_batch_portion
=
funcs
::
MatrixGetBroadcastBatchPortion
(
x_dims_vec_cut
,
y_dims_vec_cut
);
std
::
vector
<
int64_t
>
y_broadcast_dims
({
expand_batch_portion
});
y_broadcast_dims
.
insert
(
y_broadcast_dims
.
end
(),
{
y_dims_vec
[
y_dims_n
-
2
],
y_dims_vec
[
y_dims_n
-
1
]});
// dim of 'out' is the same with 'Y' after broadcast
out
->
set_dims
(
phi
::
make_ddim
(
y_broadcast_dims
));
out
->
set_dtype
(
y
.
dtype
());
out
->
set_layout
(
y
.
layout
());
out
->
share_lod
(
y
);
}
}
// namespace phi
paddle/phi/infermeta/binary.h
浏览文件 @
f7765991
...
...
@@ -29,22 +29,43 @@ namespace phi {
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.
void
Atan2InferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
out
);
void
BCELossInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
BincountInferMeta
(
const
MetaTensor
&
x
,
const
paddle
::
optional
<
const
MetaTensor
&>
weights
,
int
minlength
,
MetaTensor
*
out
);
void
CholeskySolveInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
bool
upper
,
MetaTensor
*
out
);
void
CompareAllInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
out
);
void
CompareInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
int
axis
,
MetaTensor
*
out
);
void
CompareAllInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
out
);
void
CrossInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
int
axis
,
MetaTensor
*
out
);
void
DotInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
out
);
void
DistInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
float
p
,
MetaTensor
*
out
);
void
MatmulInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
bool
trans_x
,
bool
trans_y
,
MetaTensor
*
out
);
void
DotInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
out
);
void
ElementwiseInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
...
...
@@ -55,6 +76,14 @@ void ElementwiseRawInferMeta(const MetaTensor& x_meta,
int
axis
,
MetaTensor
*
out
);
void
GatherNdInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
index
,
MetaTensor
*
out
);
void
GatherTreeMeta
(
const
MetaTensor
&
ids
,
const
MetaTensor
&
parents
,
MetaTensor
*
out
);
void
HuberLossInferMeta
(
const
MetaTensor
&
input_meta
,
const
MetaTensor
&
label_meta
,
float
delta
,
...
...
@@ -62,29 +91,24 @@ void HuberLossInferMeta(const MetaTensor& input_meta,
MetaTensor
*
residual
,
MetaConfig
config
=
MetaConfig
());
void
CholeskySolveInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
bool
upper
,
MetaTensor
*
out
);
void
TriangularSolveInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
bool
upper
,
bool
transpose
,
bool
unitriangular
,
MetaTensor
*
out
);
void
IndexSampleInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
CrossInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
int
axis
,
MetaTensor
*
out
);
void
LogLossInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
float
epsilon
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
Atan2InferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
MetaTensor
*
out
);
void
MatmulInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
bool
trans_x
,
bool
trans_y
,
MetaTensor
*
out
);
void
MvInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
vec
,
MetaTensor
*
out
);
void
SegmentPoolInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
segment_ids
,
...
...
@@ -93,37 +117,6 @@ void SegmentPoolInferMeta(const MetaTensor& x,
MetaTensor
*
summed_ids
,
MetaConfig
config
=
MetaConfig
());
void
BCELossInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
BincountInferMeta
(
const
MetaTensor
&
x
,
const
paddle
::
optional
<
const
MetaTensor
&>
weights
,
int
minlength
,
MetaTensor
*
out
);
void
DistInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
float
p
,
MetaTensor
*
out
);
void
GatherNdInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
index
,
MetaTensor
*
out
);
void
GatherTreeMeta
(
const
MetaTensor
&
ids
,
const
MetaTensor
&
parents
,
MetaTensor
*
out
);
void
LogLossInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
float
epsilon
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
MvInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
vec
,
MetaTensor
*
out
);
void
SigmoidCrossEntropyWithLogitsInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
label
,
bool
normalize
,
...
...
@@ -131,4 +124,11 @@ void SigmoidCrossEntropyWithLogitsInferMeta(const MetaTensor& x,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
TriangularSolveInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
bool
upper
,
bool
transpose
,
bool
unitriangular
,
MetaTensor
*
out
);
}
// namespace phi
paddle/phi/infermeta/nullary.cc
浏览文件 @
f7765991
...
...
@@ -16,6 +16,12 @@ limitations under the License. */
namespace
phi
{
void
CreateInferMeta
(
const
ScalarArray
&
shape
,
DataType
dtype
,
MetaTensor
*
out
)
{
CreateInferMetaBase
(
shape
.
GetData
(),
dtype
,
DataLayout
::
NCHW
,
out
);
}
void
CreateInferMetaBase
(
const
std
::
vector
<
int64_t
>&
shape
,
DataType
dtype
,
DataLayout
layout
,
...
...
@@ -26,12 +32,6 @@ void CreateInferMetaBase(const std::vector<int64_t>& shape,
out
->
set_layout
(
layout
);
}
void
CreateInferMeta
(
const
ScalarArray
&
shape
,
DataType
dtype
,
MetaTensor
*
out
)
{
CreateInferMetaBase
(
shape
.
GetData
(),
dtype
,
DataLayout
::
NCHW
,
out
);
}
void
EyeInferMeta
(
int64_t
num_rows
,
int64_t
num_columns
,
DataType
dtype
,
...
...
@@ -41,18 +41,6 @@ void EyeInferMeta(int64_t num_rows,
out
->
set_dtype
(
dtype
);
}
void
TruncatedGaussianRandomInferMeta
(
const
std
::
vector
<
int
>&
shape
,
float
mean
,
float
std
,
int
seed
,
DataType
dtype
,
MetaTensor
*
out
)
{
auto
out_dims
=
phi
::
make_ddim
(
shape
);
out
->
set_dims
(
out_dims
);
out
->
set_dtype
(
dtype
);
out
->
set_layout
(
DataLayout
::
NCHW
);
}
void
GaussianRandomInferMeta
(
const
ScalarArray
&
shape
,
float
mean
,
float
std
,
...
...
@@ -65,4 +53,16 @@ void GaussianRandomInferMeta(const ScalarArray& shape,
out
->
set_layout
(
DataLayout
::
NCHW
);
}
void
TruncatedGaussianRandomInferMeta
(
const
std
::
vector
<
int
>&
shape
,
float
mean
,
float
std
,
int
seed
,
DataType
dtype
,
MetaTensor
*
out
)
{
auto
out_dims
=
phi
::
make_ddim
(
shape
);
out
->
set_dims
(
out_dims
);
out
->
set_dtype
(
dtype
);
out
->
set_layout
(
DataLayout
::
NCHW
);
}
}
// namespace phi
paddle/phi/infermeta/nullary.h
浏览文件 @
f7765991
...
...
@@ -28,25 +28,18 @@ namespace phi {
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.
void
CreateInferMeta
(
const
ScalarArray
&
shape
,
DataType
dtype
,
MetaTensor
*
out
);
void
CreateInferMetaBase
(
const
std
::
vector
<
int64_t
>&
shape
,
DataType
dtype
,
DataLayout
layout
,
MetaTensor
*
out
);
void
CreateInferMeta
(
const
ScalarArray
&
shape
,
DataType
dtype
,
MetaTensor
*
out
);
void
EyeInferMeta
(
int64_t
num_rows
,
int64_t
num_columns
,
DataType
dtype
,
MetaTensor
*
out
);
void
TruncatedGaussianRandomInferMeta
(
const
std
::
vector
<
int
>&
shape
,
float
mean
,
float
std
,
int
seed
,
DataType
dtype
,
MetaTensor
*
out
);
void
GaussianRandomInferMeta
(
const
ScalarArray
&
shape
,
float
mean
,
float
std
,
...
...
@@ -54,4 +47,11 @@ void GaussianRandomInferMeta(const ScalarArray& shape,
DataType
dtype
,
MetaTensor
*
out
);
void
TruncatedGaussianRandomInferMeta
(
const
std
::
vector
<
int
>&
shape
,
float
mean
,
float
std
,
int
seed
,
DataType
dtype
,
MetaTensor
*
out
);
}
// namespace phi
paddle/phi/infermeta/ternary.cc
浏览文件 @
f7765991
...
...
@@ -18,6 +18,58 @@ limitations under the License. */
namespace
phi
{
void
AccuracyInferMeta
(
const
MetaTensor
&
out
,
const
MetaTensor
&
indice
,
const
MetaTensor
&
label
,
MetaTensor
*
accuracy
,
MetaTensor
*
correct
,
MetaTensor
*
total
,
MetaConfig
config
)
{
auto
inference_dim
=
out
.
dims
();
auto
label_dim
=
label
.
dims
();
// Assume indices has same shape as inference, because
// it's the output of topk.
PADDLE_ENFORCE_EQ
(
label_dim
.
size
(),
2
,
phi
::
errors
::
InvalidArgument
(
"ShapeError: label's dimensions of AccuracyOp must be 2. "
"But received label's dimensions = %d, label's shape = [%s]"
,
label_dim
.
size
(),
label_dim
));
if
(
config
.
is_runtime
)
{
PADDLE_ENFORCE_EQ
(
label_dim
[
1
],
1
,
phi
::
errors
::
InvalidArgument
(
"ShapeError: label's second dimension of "
"AccuracyOp must be 1. But received label's "
"second dimension is = %d, label's shape = [%s]"
,
label_dim
[
1
],
label_dim
));
PADDLE_ENFORCE_EQ
(
inference_dim
[
0
],
label_dim
[
0
],
phi
::
errors
::
InvalidArgument
(
"ShapeError: the output's num_rows of AccuracyOp must be"
" the same as label's num_rows. But received output's "
"shape = [%s], label's shape = [%s], output's num_rows = %d, "
"label's "
"num_rows = %d"
,
inference_dim
,
label_dim
,
inference_dim
[
0
],
label_dim
[
0
]));
}
accuracy
->
set_dims
({
1
});
accuracy
->
set_dtype
(
out
.
dtype
());
correct
->
set_dims
({
1
});
correct
->
set_dtype
(
out
.
dtype
());
total
->
set_dims
({
1
});
total
->
set_dtype
(
out
.
dtype
());
accuracy
->
share_lod
(
out
);
}
void
AddmmInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
...
...
@@ -89,6 +141,107 @@ void AddmmInferMeta(const MetaTensor& input,
out
->
set_dtype
(
input
.
dtype
());
}
void
GraphSendRecvInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
src_index
,
const
MetaTensor
&
dst_index
,
const
std
::
string
&
pool_type
,
MetaTensor
*
out
,
MetaTensor
*
dst_count
)
{
auto
src_index_dims
=
src_index
.
dims
();
if
(
src_index_dims
.
size
()
==
2
)
{
PADDLE_ENFORCE_EQ
(
src_index_dims
[
1
],
1
,
phi
::
errors
::
InvalidArgument
(
"The last dim of Src_index should be 1 when it "
"is 2D, but we get %d"
,
src_index_dims
[
1
]));
}
else
{
PADDLE_ENFORCE_EQ
(
src_index_dims
.
size
(),
1
,
phi
::
errors
::
InvalidArgument
(
"The Src_index should be 1D, when it is not 2D, but we get %d"
,
src_index_dims
.
size
()));
}
auto
dst_index_dims
=
dst_index
.
dims
();
if
(
dst_index_dims
.
size
()
==
2
)
{
PADDLE_ENFORCE_EQ
(
dst_index_dims
[
1
],
1
,
phi
::
errors
::
InvalidArgument
(
"The last dim of Dst_index should be 1 when it "
"is 2D, but we get %d"
,
dst_index_dims
[
1
]));
}
else
{
PADDLE_ENFORCE_EQ
(
dst_index_dims
.
size
(),
1
,
phi
::
errors
::
InvalidArgument
(
"The Dst_index should be 1D, "
"when it is not 2D, but we get %d"
,
dst_index_dims
.
size
()));
}
PADDLE_ENFORCE_EQ
(
src_index_dims
[
0
],
dst_index_dims
[
0
],
phi
::
errors
::
InvalidArgument
(
"Src_index and Dst_index should have the same shape."
));
auto
dims
=
x
.
dims
();
out
->
set_dims
(
dims
);
out
->
set_dtype
(
x
.
dtype
());
if
(
pool_type
==
"MEAN"
)
{
dst_count
->
set_dims
({
dims
[
0
]});
dst_count
->
set_dtype
(
DataType
::
INT32
);
}
}
void
LerpInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
const
MetaTensor
&
weight
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
auto
w_dims
=
weight
.
dims
();
DDim
out_dims
;
out_dims
=
funcs
::
GetOutputDims
(
x_dims
,
y_dims
);
if
(
w_dims
.
size
()
>
1
||
w_dims
[
0
]
!=
1
)
{
out_dims
=
funcs
::
GetOutputDims
(
out_dims
,
w_dims
);
}
out
->
set_dims
(
out_dims
);
out
->
set_dtype
(
x
.
dtype
());
out
->
share_lod
(
x
);
}
void
LinspaceInferMeta
(
const
MetaTensor
&
start
,
const
MetaTensor
&
stop
,
const
MetaTensor
&
number
,
MetaTensor
*
out
)
{
auto
s_dims
=
start
.
dims
();
PADDLE_ENFORCE_EQ
(
(
s_dims
.
size
()
==
1
)
&&
(
s_dims
[
0
]
==
1
),
true
,
phi
::
errors
::
InvalidArgument
(
"The shape of Input(Start) must be [1],"
"but received input shape is [%s]."
,
s_dims
));
auto
e_dims
=
stop
.
dims
();
PADDLE_ENFORCE_EQ
(
(
e_dims
.
size
()
==
1
)
&&
(
e_dims
[
0
]
==
1
),
true
,
phi
::
errors
::
InvalidArgument
(
"The shape of Input(Stop) must be [1],"
"but received input shape is [%s]."
,
e_dims
));
auto
step_dims
=
number
.
dims
();
PADDLE_ENFORCE_EQ
(
(
step_dims
.
size
()
==
1
)
&&
(
step_dims
[
0
]
==
1
),
true
,
phi
::
errors
::
InvalidArgument
(
"The shape of Input(Num) must be [1],"
"but received input shape is [%s]."
,
step_dims
));
out
->
set_dims
(
phi
::
make_ddim
({
-
1
}));
out
->
set_dtype
(
start
.
dtype
());
}
void
NllLossRawInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
paddle
::
optional
<
const
MetaTensor
&>
weight
,
...
...
@@ -319,156 +472,4 @@ void ViterbiDecodeInferMeta(const MetaTensor& input,
scores
->
set_dtype
(
length
.
dtype
());
}
void
LerpInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
const
MetaTensor
&
weight
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
auto
y_dims
=
y
.
dims
();
auto
w_dims
=
weight
.
dims
();
DDim
out_dims
;
out_dims
=
funcs
::
GetOutputDims
(
x_dims
,
y_dims
);
if
(
w_dims
.
size
()
>
1
||
w_dims
[
0
]
!=
1
)
{
out_dims
=
funcs
::
GetOutputDims
(
out_dims
,
w_dims
);
}
out
->
set_dims
(
out_dims
);
out
->
set_dtype
(
x
.
dtype
());
out
->
share_lod
(
x
);
}
void
LinspaceInferMeta
(
const
MetaTensor
&
start
,
const
MetaTensor
&
stop
,
const
MetaTensor
&
number
,
MetaTensor
*
out
)
{
auto
s_dims
=
start
.
dims
();
PADDLE_ENFORCE_EQ
(
(
s_dims
.
size
()
==
1
)
&&
(
s_dims
[
0
]
==
1
),
true
,
phi
::
errors
::
InvalidArgument
(
"The shape of Input(Start) must be [1],"
"but received input shape is [%s]."
,
s_dims
));
auto
e_dims
=
stop
.
dims
();
PADDLE_ENFORCE_EQ
(
(
e_dims
.
size
()
==
1
)
&&
(
e_dims
[
0
]
==
1
),
true
,
phi
::
errors
::
InvalidArgument
(
"The shape of Input(Stop) must be [1],"
"but received input shape is [%s]."
,
e_dims
));
auto
step_dims
=
number
.
dims
();
PADDLE_ENFORCE_EQ
(
(
step_dims
.
size
()
==
1
)
&&
(
step_dims
[
0
]
==
1
),
true
,
phi
::
errors
::
InvalidArgument
(
"The shape of Input(Num) must be [1],"
"but received input shape is [%s]."
,
step_dims
));
out
->
set_dims
(
phi
::
make_ddim
({
-
1
}));
out
->
set_dtype
(
start
.
dtype
());
}
void
AccuracyInferMeta
(
const
MetaTensor
&
out
,
const
MetaTensor
&
indice
,
const
MetaTensor
&
label
,
MetaTensor
*
accuracy
,
MetaTensor
*
correct
,
MetaTensor
*
total
,
MetaConfig
config
)
{
auto
inference_dim
=
out
.
dims
();
auto
label_dim
=
label
.
dims
();
// Assume indices has same shape as inference, because
// it's the output of topk.
PADDLE_ENFORCE_EQ
(
label_dim
.
size
(),
2
,
phi
::
errors
::
InvalidArgument
(
"ShapeError: label's dimensions of AccuracyOp must be 2. "
"But received label's dimensions = %d, label's shape = [%s]"
,
label_dim
.
size
(),
label_dim
));
if
(
config
.
is_runtime
)
{
PADDLE_ENFORCE_EQ
(
label_dim
[
1
],
1
,
phi
::
errors
::
InvalidArgument
(
"ShapeError: label's second dimension of "
"AccuracyOp must be 1. But received label's "
"second dimension is = %d, label's shape = [%s]"
,
label_dim
[
1
],
label_dim
));
PADDLE_ENFORCE_EQ
(
inference_dim
[
0
],
label_dim
[
0
],
phi
::
errors
::
InvalidArgument
(
"ShapeError: the output's num_rows of AccuracyOp must be"
" the same as label's num_rows. But received output's "
"shape = [%s], label's shape = [%s], output's num_rows = %d, "
"label's "
"num_rows = %d"
,
inference_dim
,
label_dim
,
inference_dim
[
0
],
label_dim
[
0
]));
}
accuracy
->
set_dims
({
1
});
accuracy
->
set_dtype
(
out
.
dtype
());
correct
->
set_dims
({
1
});
correct
->
set_dtype
(
out
.
dtype
());
total
->
set_dims
({
1
});
total
->
set_dtype
(
out
.
dtype
());
accuracy
->
share_lod
(
out
);
}
void
GraphSendRecvInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
src_index
,
const
MetaTensor
&
dst_index
,
const
std
::
string
&
pool_type
,
MetaTensor
*
out
,
MetaTensor
*
dst_count
)
{
auto
src_index_dims
=
src_index
.
dims
();
if
(
src_index_dims
.
size
()
==
2
)
{
PADDLE_ENFORCE_EQ
(
src_index_dims
[
1
],
1
,
phi
::
errors
::
InvalidArgument
(
"The last dim of Src_index should be 1 when it "
"is 2D, but we get %d"
,
src_index_dims
[
1
]));
}
else
{
PADDLE_ENFORCE_EQ
(
src_index_dims
.
size
(),
1
,
phi
::
errors
::
InvalidArgument
(
"The Src_index should be 1D, when it is not 2D, but we get %d"
,
src_index_dims
.
size
()));
}
auto
dst_index_dims
=
dst_index
.
dims
();
if
(
dst_index_dims
.
size
()
==
2
)
{
PADDLE_ENFORCE_EQ
(
dst_index_dims
[
1
],
1
,
phi
::
errors
::
InvalidArgument
(
"The last dim of Dst_index should be 1 when it "
"is 2D, but we get %d"
,
dst_index_dims
[
1
]));
}
else
{
PADDLE_ENFORCE_EQ
(
dst_index_dims
.
size
(),
1
,
phi
::
errors
::
InvalidArgument
(
"The Dst_index should be 1D, "
"when it is not 2D, but we get %d"
,
dst_index_dims
.
size
()));
}
PADDLE_ENFORCE_EQ
(
src_index_dims
[
0
],
dst_index_dims
[
0
],
phi
::
errors
::
InvalidArgument
(
"Src_index and Dst_index should have the same shape."
));
auto
dims
=
x
.
dims
();
out
->
set_dims
(
dims
);
out
->
set_dtype
(
x
.
dtype
());
if
(
pool_type
==
"MEAN"
)
{
dst_count
->
set_dims
({
dims
[
0
]});
dst_count
->
set_dtype
(
DataType
::
INT32
);
}
}
}
// namespace phi
paddle/phi/infermeta/ternary.h
浏览文件 @
f7765991
...
...
@@ -45,16 +45,22 @@ void AddmmInferMeta(const MetaTensor& input,
float
beta
,
MetaTensor
*
out
);
void
GatherNdGradInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
index
,
const
MetaTensor
&
out_grad
,
MetaTensor
*
x_grad
);
void
GraphSendRecvInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
src_index
,
const
MetaTensor
&
dst_index
,
const
std
::
string
&
pool_type
,
MetaTensor
*
out
,
MetaTensor
*
dst_count
);
void
ScatterInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
index
,
const
MetaTensor
&
updates
,
bool
overwrite
,
MetaTensor
*
out
);
void
LerpInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
const
MetaTensor
&
weight
,
MetaTensor
*
out
);
void
LinspaceInferMeta
(
const
MetaTensor
&
start
,
const
MetaTensor
&
stop
,
const
MetaTensor
&
number
,
MetaTensor
*
out
);
void
NllLossRawInferMeta
(
const
MetaTensor
&
input
,
const
MetaTensor
&
label
,
...
...
@@ -65,6 +71,12 @@ void NllLossRawInferMeta(const MetaTensor& input,
MetaTensor
*
total_weight
,
MetaConfig
config
=
MetaConfig
());
void
ScatterInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
index
,
const
MetaTensor
&
updates
,
bool
overwrite
,
MetaTensor
*
out
);
void
ScatterNdAddInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
index
,
const
MetaTensor
&
updates
,
...
...
@@ -78,20 +90,4 @@ void ViterbiDecodeInferMeta(const MetaTensor& input,
MetaTensor
*
path
,
MetaConfig
config
=
MetaConfig
());
void
LerpInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
y
,
const
MetaTensor
&
weight
,
MetaTensor
*
out
);
void
LinspaceInferMeta
(
const
MetaTensor
&
start
,
const
MetaTensor
&
stop
,
const
MetaTensor
&
number
,
MetaTensor
*
out
);
void
GraphSendRecvInferMeta
(
const
MetaTensor
&
x
,
const
MetaTensor
&
src_index
,
const
MetaTensor
&
dst_index
,
const
std
::
string
&
pool_type
,
MetaTensor
*
out
,
MetaTensor
*
dst_count
);
}
// namespace phi
paddle/phi/infermeta/unary.cc
浏览文件 @
f7765991
...
...
@@ -26,6 +26,82 @@ limitations under the License. */
namespace
phi
{
void
ArgMinMaxInferMeta
(
const
MetaTensor
&
x
,
int64_t
axis
,
bool
keepdims
,
bool
flatten
,
int
dtype
,
MetaTensor
*
out
,
MetaConfig
config
)
{
const
auto
&
x_dims
=
x
.
dims
();
PADDLE_ENFORCE_GE
(
axis
,
-
x_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"'axis'(%d) must be greater than or equal to"
" -Rank(X)(%d)."
,
axis
,
-
x_dims
.
size
()));
PADDLE_ENFORCE_LT
(
axis
,
x_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"'axis'(%d) must be less than Rank(X)(%d) of Input(X)."
,
axis
,
x_dims
.
size
()));
PADDLE_ENFORCE_EQ
(
(
dtype
<
0
||
dtype
==
2
||
dtype
==
3
),
true
,
phi
::
errors
::
InvalidArgument
(
"The attribute of dtype in argmin/argmax must be [%s] or [%s], but "
"received [%s]"
,
paddle
::
framework
::
DataTypeToString
(
paddle
::
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
paddle
::
framework
::
proto
::
VarType
::
INT64
),
paddle
::
framework
::
DataTypeToString
(
static_cast
<
paddle
::
framework
::
proto
::
VarType
::
Type
>
(
dtype
))));
auto
x_rank
=
x_dims
.
size
();
if
(
axis
<
0
)
axis
+=
x_rank
;
if
(
config
.
is_runtime
)
{
if
(
dtype
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
int64_t
all_element_num
=
0
;
if
(
flatten
)
{
all_element_num
=
phi
::
product
(
x_dims
);
}
else
{
all_element_num
=
x_dims
[
axis
];
}
PADDLE_ENFORCE_LE
(
all_element_num
,
INT_MAX
,
phi
::
errors
::
InvalidArgument
(
"The element num of the argmin/argmax input at axis is "
"%d, is larger than int32 maximum value:%d, you must "
"set the dtype of argmin/argmax to 'int64'."
,
all_element_num
,
INT_MAX
));
}
}
std
::
vector
<
int64_t
>
vec
;
if
(
flatten
)
{
vec
.
emplace_back
(
static_cast
<
int64_t
>
(
1
));
}
else
{
for
(
int64_t
i
=
0
;
i
<
axis
;
i
++
)
vec
.
emplace_back
(
x_dims
[
i
]);
if
(
keepdims
)
{
vec
.
emplace_back
(
static_cast
<
int64_t
>
(
1
));
}
for
(
int64_t
i
=
axis
+
1
;
i
<
x_rank
;
i
++
)
vec
.
emplace_back
(
x_dims
[
i
]);
}
out
->
set_dims
(
phi
::
make_ddim
(
vec
));
if
(
dtype
==
2
)
{
out
->
set_dtype
(
DataType
::
INT32
);
}
else
if
(
dtype
==
3
)
{
out
->
set_dtype
(
DataType
::
INT64
);
}
}
void
ArgsortInferMeta
(
const
MetaTensor
&
input
,
int
axis
,
bool
descending
,
...
...
@@ -54,96 +130,6 @@ void ArgsortInferMeta(const MetaTensor& input,
indices
->
share_lod
(
input
);
}
void
UnchangedInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
)
{
out
->
share_meta
(
x
);
}
// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void
UnchangedInferMetaCheckAxis
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
)
{
auto
rank
=
x
.
dims
().
size
();
PADDLE_ENFORCE_GE
(
axis
,
-
rank
,
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X). But received axis: %d, R: %d."
,
axis
,
rank
));
PADDLE_ENFORCE_LT
(
axis
,
rank
,
phi
::
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X). But received axis: %d, R: %d."
,
axis
,
rank
));
out
->
share_meta
(
x
);
}
void
RealAndImagInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
dtype
::
ToReal
(
x
.
dtype
()));
out
->
set_layout
(
x
.
layout
());
}
void
FlattenInferMeta
(
const
MetaTensor
&
x
,
int
start_axis
,
int
stop_axis
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
int
in_dims_size
=
x_dims
.
size
();
if
(
start_axis
<
0
)
{
start_axis
=
start_axis
+
in_dims_size
;
}
if
(
stop_axis
<
0
)
{
stop_axis
=
stop_axis
+
in_dims_size
;
}
PADDLE_ENFORCE_GE
(
stop_axis
,
start_axis
,
phi
::
errors
::
InvalidArgument
(
"The stop_axis should be greater"
"than or equal to start_axis."
));
int64_t
outer
=
1
;
std
::
vector
<
int32_t
>
out_shape
;
out_shape
.
reserve
(
in_dims_size
-
stop_axis
+
start_axis
);
for
(
int
i
=
0
;
i
<
start_axis
;
++
i
)
{
out_shape
.
push_back
(
x_dims
[
i
]);
}
for
(
int
i
=
start_axis
;
i
<=
stop_axis
;
i
++
)
{
if
(
x_dims
[
i
]
==
-
1
||
outer
==
-
1
)
{
outer
=
-
1
;
}
else
{
outer
*=
x_dims
[
i
];
}
}
out_shape
.
push_back
(
outer
);
for
(
int
i
=
stop_axis
+
1
;
i
<
in_dims_size
;
i
++
)
{
out_shape
.
push_back
(
x_dims
[
i
]);
}
const
auto
&
out_dims
=
phi
::
make_ddim
(
out_shape
);
out
->
set_dims
(
out_dims
);
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
x
.
layout
());
if
(
x_dims
[
0
]
==
out_dims
[
0
])
{
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
out
->
share_lod
(
x
);
}
}
void
GumbelSoftmaxInferMeta
(
const
MetaTensor
&
x
,
float
temperature
,
bool
hard
,
int
axis
,
MetaTensor
*
out
)
{
UnchangedInferMetaCheckAxis
(
x
,
axis
,
out
);
}
void
CastInferMeta
(
const
MetaTensor
&
x
,
DataType
out_dtype
,
MetaTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
out_dtype
);
...
...
@@ -203,73 +189,275 @@ void CumsumInferMeta(const MetaTensor& x,
out
->
share_lod
(
x
);
}
void
IncrementInferMeta
(
const
MetaTensor
&
x
,
float
value
,
MetaTensor
*
out
)
{
PADDLE_ENFORCE_EQ
(
product
(
x
.
dims
()),
1UL
,
errors
::
InvalidArgument
(
"The number of elements in Input(X) should be 1."
"Now the number is %d."
,
product
(
x
.
dims
())));
out
->
set_dims
(
x
.
dims
());
out
->
share_lod
(
x
);
out
->
set_dtype
(
x
.
dtype
());
}
static
phi
::
DDim
ValidateShape
(
const
std
::
vector
<
int64_t
>
shape
,
const
phi
::
DDim
&
in_dims
)
{
const
int64_t
in_size
=
phi
::
product
(
in_dims
);
auto
in_dims_vec
=
phi
::
vectorize
(
in_dims
);
bool
all_positive
=
std
::
all_of
(
in_dims_vec
.
cbegin
(),
in_dims_vec
.
cend
(),
[](
int64_t
i
)
{
return
i
>
0
;
});
// only one dimension can be set to -1, whose size will be automatically
// infered.
const
int64_t
unk_dim_val
=
-
1
;
const
int64_t
copy_dim_val
=
0
;
void
DiagInferMeta
(
const
MetaTensor
&
x
,
int
offset
,
float
padding_value
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
std
::
vector
<
int64_t
>
output_shape
(
shape
.
size
(),
0
);
int64_t
capacity
=
1
;
int
unk_dim_idx
=
-
1
;
for
(
size_t
i
=
0
;
i
<
shape
.
size
();
++
i
)
{
if
(
shape
[
i
]
==
unk_dim_val
)
{
PADDLE_ENFORCE_EQ
(
unk_dim_idx
,
-
1
,
phi
::
errors
::
InvalidArgument
(
"Only one dimension value of 'shape' in ReshapeOp can "
"be -1. But received shape = [%s], shape[%d] is also -1."
,
phi
::
make_ddim
(
shape
),
i
));
unk_dim_idx
=
i
;
}
else
if
(
shape
[
i
]
==
copy_dim_val
)
{
PADDLE_ENFORCE_LT
(
static_cast
<
int
>
(
i
),
in_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"The index of 0 in `shape` must be less than "
"the input tensor X's dimensions. "
"But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
"X's dimensions = %d."
,
phi
::
make_ddim
(
shape
),
i
,
in_dims
,
in_dims
.
size
()));
if
(
x_dims
.
size
()
==
1UL
)
{
int64_t
size_
=
x_dims
[
0
]
+
std
::
abs
(
offset
);
out
->
set_dims
({
size_
,
size_
});
out
->
set_dtype
(
x
.
dtype
());
}
else
if
(
x_dims
.
size
()
==
2UL
)
{
int64_t
size_
=
0
;
if
(
offset
>=
0
)
{
// Note(LutaoChu): Do not use std::min here, otherwise the calculation
// of `size_` will have unexpected result on Windows Python3.8
if
(
x_dims
[
0
]
<
x_dims
[
1
]
-
offset
)
{
size_
=
x_dims
[
0
];
}
else
{
size_
=
x_dims
[
1
]
-
offset
;
}
}
else
{
PADDLE_ENFORCE_GT
(
shape
[
i
],
0
,
phi
::
errors
::
InvalidArgument
(
"Each dimension value of 'shape' in ReshapeOp must not "
"be negative except one unknown dimension. "
"But received shape = [%s], shape[%d] = %d."
,
phi
::
make_ddim
(
shape
),
i
,
shape
[
i
]));
// Note(LutaoChu): Do not use std::min here, otherwise the calculation
// of `size_` will have unexpected result on Windows Python3.8
if
(
x_dims
[
0
]
+
offset
<
x_dims
[
1
])
{
size_
=
x_dims
[
0
]
+
offset
;
}
else
{
size_
=
x_dims
[
1
];
}
}
// NOTE all non-zero values will be converted to True (include negative
// value)
capacity
*=
(
shape
[
i
]
?
shape
[
i
]
:
in_dims
[
i
]);
out
->
set_dims
({
size_
});
out
->
set_dtype
(
x
.
dtype
());
}
else
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"The input tensor X's dimensions of DiagV2Op should be either 1 or "
"2, but received %d."
,
x_dims
.
size
()));
}
}
void
DiagonalInferMeta
(
const
MetaTensor
&
input
,
int
offset
,
int
axis1
,
int
axis2
,
MetaTensor
*
out
)
{
auto
x_dims
=
input
.
dims
();
int
offset_
=
offset
;
int
axis1_
=
axis1
<
0
?
x_dims
.
size
()
+
axis1
:
axis1
;
int
axis2_
=
axis2
<
0
?
x_dims
.
size
()
+
axis2
:
axis2
;
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
phi
::
errors
::
OutOfRange
(
"Input's dim is out of range (expected at "
"least 2 dimensions, but got %ld)."
,
x_dims
.
size
()));
PADDLE_ENFORCE_LT
(
axis1_
,
x_dims
.
size
(),
phi
::
errors
::
OutOfRange
(
"Attr(axis1) is out of range (expected to be in range of [%ld, "
"%ld], but got %ld)."
,
-
(
x_dims
.
size
()),
(
x_dims
.
size
()
-
1
),
axis1
));
PADDLE_ENFORCE_LT
(
axis2_
,
x_dims
.
size
(),
phi
::
errors
::
OutOfRange
(
"Attr(axis2) is out of range (expected to be in range of [%ld, "
"%ld], but got %ld)."
,
-
(
x_dims
.
size
()),
(
x_dims
.
size
()
-
1
),
axis2
));
PADDLE_ENFORCE_NE
(
axis1_
,
axis2_
,
phi
::
errors
::
InvalidArgument
(
"The dimensions should not be identical "
"%d vs %d."
,
axis1
,
axis2
));
auto
out_dims
=
vectorize
(
x_dims
);
// from out_dims get the dim size of axis1_.
auto
axis1_size
=
out_dims
[
axis1_
];
auto
axis2_size
=
out_dims
[
axis2_
];
// delete two dims by attr axis1 and axis2 from out_dims.
/* example:
out_dim = [2, 3, 4];
axis1 = 0;
axis2 = 1;
according to the attr of axis1 and axis2, we get:
out_dim = [4].
*/
out_dims
.
erase
(
out_dims
.
begin
()
+
std
::
max
(
axis1_
,
axis2_
));
out_dims
.
erase
(
out_dims
.
begin
()
+
std
::
min
(
axis1_
,
axis2_
));
if
(
offset_
==
0
)
{
out_dims
.
push_back
(
std
::
min
(
axis1_size
,
axis2_size
));
}
else
if
(
offset_
>
0
)
{
if
((
axis2_size
-
offset_
)
>
0
)
{
out_dims
.
push_back
(
std
::
min
(
axis1_size
,
axis2_size
-
offset_
));
}
else
{
out_dims
.
push_back
(
0
);
}
}
else
{
if
((
axis1_size
+
offset_
)
>
0
)
{
out_dims
.
push_back
(
std
::
min
(
axis1_size
+
offset_
,
axis2_size
));
}
else
{
out_dims
.
push_back
(
0
);
}
}
out
->
set_dims
(
phi
::
make_ddim
(
out_dims
));
}
void
EighInferMeta
(
const
MetaTensor
&
x
,
const
std
::
string
&
uplo
,
MetaTensor
*
out_w
,
MetaTensor
*
out_v
)
{
auto
input_dim
=
x
.
dims
();
auto
rank
=
input_dim
.
size
();
PADDLE_ENFORCE_GE
(
rank
,
2
,
phi
::
errors
::
InvalidArgument
(
"The Input(X) should have at least 2 dimensions."
"But received a %d dimension tensor."
,
rank
));
PADDLE_ENFORCE_EQ
(
input_dim
[
rank
-
2
],
input_dim
[
rank
-
1
],
phi
::
errors
::
InvalidArgument
(
"Eigh op is designed for square matrix, consequently"
"inner-most 2 dimensions of Input(X) should be symmetric."
"But received X's shape[-2] = %d and shape[-1] = %d."
,
input_dim
[
rank
-
2
],
input_dim
[
rank
-
1
]));
std
::
vector
<
int64_t
>
values_dim
;
for
(
auto
i
=
0
;
i
<
rank
-
1
;
i
++
)
{
values_dim
.
emplace_back
(
input_dim
[
i
]);
}
out_w
->
set_dims
(
phi
::
make_ddim
(
values_dim
));
out_v
->
set_dims
(
input_dim
);
}
void
FlattenInferMeta
(
const
MetaTensor
&
x
,
int
start_axis
,
int
stop_axis
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
int
in_dims_size
=
x_dims
.
size
();
if
(
start_axis
<
0
)
{
start_axis
=
start_axis
+
in_dims_size
;
}
if
(
stop_axis
<
0
)
{
stop_axis
=
stop_axis
+
in_dims_size
;
}
PADDLE_ENFORCE_GE
(
stop_axis
,
start_axis
,
phi
::
errors
::
InvalidArgument
(
"The stop_axis should be greater"
"than or equal to start_axis."
));
int64_t
outer
=
1
;
std
::
vector
<
int32_t
>
out_shape
;
out_shape
.
reserve
(
in_dims_size
-
stop_axis
+
start_axis
);
for
(
int
i
=
0
;
i
<
start_axis
;
++
i
)
{
out_shape
.
push_back
(
x_dims
[
i
]);
}
for
(
int
i
=
start_axis
;
i
<=
stop_axis
;
i
++
)
{
if
(
x_dims
[
i
]
==
-
1
||
outer
==
-
1
)
{
outer
=
-
1
;
}
else
{
outer
*=
x_dims
[
i
];
}
}
out_shape
.
push_back
(
outer
);
for
(
int
i
=
stop_axis
+
1
;
i
<
in_dims_size
;
i
++
)
{
out_shape
.
push_back
(
x_dims
[
i
]);
}
const
auto
&
out_dims
=
phi
::
make_ddim
(
out_shape
);
out
->
set_dims
(
out_dims
);
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
x
.
layout
());
if
(
x_dims
[
0
]
==
out_dims
[
0
])
{
// Only pass LoD when the first dimension of output and Input(X)
// are the same.
out
->
share_lod
(
x
);
}
}
void
GumbelSoftmaxInferMeta
(
const
MetaTensor
&
x
,
float
temperature
,
bool
hard
,
int
axis
,
MetaTensor
*
out
)
{
UnchangedInferMetaCheckAxis
(
x
,
axis
,
out
);
}
void
IncrementInferMeta
(
const
MetaTensor
&
x
,
float
value
,
MetaTensor
*
out
)
{
PADDLE_ENFORCE_EQ
(
product
(
x
.
dims
()),
1UL
,
errors
::
InvalidArgument
(
"The number of elements in Input(X) should be 1."
"Now the number is %d."
,
product
(
x
.
dims
())));
out
->
set_dims
(
x
.
dims
());
out
->
share_lod
(
x
);
out
->
set_dtype
(
x
.
dtype
());
}
static
phi
::
DDim
ValidateShape
(
const
std
::
vector
<
int64_t
>
shape
,
const
phi
::
DDim
&
in_dims
)
{
const
int64_t
in_size
=
phi
::
product
(
in_dims
);
auto
in_dims_vec
=
phi
::
vectorize
(
in_dims
);
bool
all_positive
=
std
::
all_of
(
in_dims_vec
.
cbegin
(),
in_dims_vec
.
cend
(),
[](
int64_t
i
)
{
return
i
>
0
;
});
// only one dimension can be set to -1, whose size will be automatically
// infered.
const
int64_t
unk_dim_val
=
-
1
;
const
int64_t
copy_dim_val
=
0
;
std
::
vector
<
int64_t
>
output_shape
(
shape
.
size
(),
0
);
int64_t
capacity
=
1
;
int
unk_dim_idx
=
-
1
;
for
(
size_t
i
=
0
;
i
<
shape
.
size
();
++
i
)
{
if
(
shape
[
i
]
==
unk_dim_val
)
{
PADDLE_ENFORCE_EQ
(
unk_dim_idx
,
-
1
,
phi
::
errors
::
InvalidArgument
(
"Only one dimension value of 'shape' in ReshapeOp can "
"be -1. But received shape = [%s], shape[%d] is also -1."
,
phi
::
make_ddim
(
shape
),
i
));
unk_dim_idx
=
i
;
}
else
if
(
shape
[
i
]
==
copy_dim_val
)
{
PADDLE_ENFORCE_LT
(
static_cast
<
int
>
(
i
),
in_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"The index of 0 in `shape` must be less than "
"the input tensor X's dimensions. "
"But received shape = [%s], shape[%d] = 0, X's shape = [%s], "
"X's dimensions = %d."
,
phi
::
make_ddim
(
shape
),
i
,
in_dims
,
in_dims
.
size
()));
}
else
{
PADDLE_ENFORCE_GT
(
shape
[
i
],
0
,
phi
::
errors
::
InvalidArgument
(
"Each dimension value of 'shape' in ReshapeOp must not "
"be negative except one unknown dimension. "
"But received shape = [%s], shape[%d] = %d."
,
phi
::
make_ddim
(
shape
),
i
,
shape
[
i
]));
}
// NOTE all non-zero values will be converted to True (include negative
// value)
capacity
*=
(
shape
[
i
]
?
shape
[
i
]
:
in_dims
[
i
]);
output_shape
[
i
]
=
(
shape
[
i
]
?
static_cast
<
int64_t
>
(
shape
[
i
])
:
in_dims
[
i
]);
}
...
...
@@ -360,6 +548,11 @@ void IsEmptyInferMeta(const MetaTensor& x, MetaTensor* out) {
out
->
set_dtype
(
DataType
::
BOOL
);
}
void
IsfiniteInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
DataType
::
BOOL
);
}
void
MultinomialInferMeta
(
const
MetaTensor
&
x
,
int
num_samples
,
bool
replacement
,
...
...
@@ -395,124 +588,97 @@ void MultinomialInferMeta(const MetaTensor& x,
out
->
set_dtype
(
DataType
::
INT64
);
}
void
TileInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
repeat_times
,
MetaTensor
*
out
,
MetaConfig
config
)
{
#define MAX_RANK_SUPPORTED 6
auto
repeat_times_data
=
repeat_times
.
GetData
();
auto
x_dims
=
x
.
dims
();
if
(
repeat_times_data
.
size
()
==
0
)
{
repeat_times_data
=
std
::
vector
<
int64_t
>
(
x_dims
.
size
(),
-
1
);
}
PADDLE_ENFORCE_LE
(
x_dims
.
size
(),
MAX_RANK_SUPPORTED
,
errors
::
InvalidArgument
(
"The rank of the input 'x' for tile op "
"must not be greater than %d, but the value received is %d."
,
MAX_RANK_SUPPORTED
,
x_dims
.
size
()));
PADDLE_ENFORCE_LE
(
repeat_times_data
.
size
(),
MAX_RANK_SUPPORTED
,
errors
::
InvalidArgument
(
"The size of the shape of input 'repeat_times' for tile op "
"must not be greater than %d, but the value received is %d."
,
MAX_RANK_SUPPORTED
,
repeat_times_data
.
size
()));
PADDLE_ENFORCE_GE
(
repeat_times_data
.
size
(),
1
,
errors
::
InvalidArgument
(
"The size of the shape of input 'repeat_times' for tile op "
"must be positive integers, but the value received is %d."
,
repeat_times_data
.
size
()));
auto
out_rank
=
std
::
max
(
static_cast
<
size_t
>
(
x_dims
.
size
()),
repeat_times_data
.
size
());
std
::
vector
<
int64_t
>
out_shape
(
out_rank
);
auto
x_dim_vec
=
phi
::
vectorize
<
int
>
(
x_dims
);
if
(
x_dim_vec
.
size
()
>
repeat_times_data
.
size
())
{
auto
diff
=
x_dim_vec
.
size
()
-
repeat_times_data
.
size
();
repeat_times_data
.
insert
(
repeat_times_data
.
begin
(),
diff
,
-
1
);
}
else
{
auto
diff
=
repeat_times_data
.
size
()
-
x_dim_vec
.
size
();
x_dim_vec
.
insert
(
x_dim_vec
.
begin
(),
diff
,
-
1
);
void
PadInferMeta
(
const
MetaTensor
&
input
,
const
std
::
vector
<
int
>&
paddings
,
float
pad_value
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
x_dim
=
input
.
dims
();
PADDLE_ENFORCE_EQ
(
static_cast
<
int
>
(
paddings
.
size
()),
x_dim
.
size
()
*
2
,
phi
::
errors
::
InvalidArgument
(
"Size of 'paddings' dimension should be equal to 2 * size of "
"Input(X)'s dimension, but received (size of 'paddings' dimension "
"is) %d vs (2 * size of Input(X)'s dimension is) %d."
,
static_cast
<
int
>
(
paddings
.
size
()),
x_dim
.
size
()
*
2
));
for
(
size_t
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
PADDLE_ENFORCE_GE
(
paddings
[
i
],
0
,
phi
::
errors
::
InvalidArgument
(
"The element of 'paddings' should >= 0, but "
"received %d for index %d."
,
paddings
[
i
],
static_cast
<
int
>
(
i
)));
}
for
(
size_t
i
=
0
;
i
<
repeat_times_data
.
size
();
++
i
)
{
if
(
x_dim_vec
[
i
]
==
-
1
||
repeat_times_data
[
i
]
==
-
1
)
{
out_shape
[
i
]
=
-
1
;
std
::
vector
<
int64_t
>
out_dims
(
x_dim
.
size
());
for
(
int
i
=
0
;
i
<
x_dim
.
size
();
++
i
)
{
if
((
!
config
.
is_runtime
)
&&
(
x_dim
[
i
]
==
-
1
))
{
out_dims
[
i
]
=
-
1
;
}
else
{
PADDLE_ENFORCE_GT
(
repeat_times_data
[
i
],
0
,
errors
::
InvalidArgument
(
"Every element of the input 'repeat_times' for tile op must be "
"greater than 0, but the value given is %d."
,
repeat_times_data
[
i
]));
out_shape
[
i
]
=
x_dim_vec
[
i
]
*
repeat_times_data
[
i
];
out_dims
[
i
]
=
x_dim
[
i
]
+
paddings
[
i
*
2
]
+
paddings
[
i
*
2
+
1
];
}
}
out
->
set_dims
(
phi
::
make_ddim
(
out_shape
));
if
(
out_shape
[
0
]
==
x_dims
[
0
])
{
out
->
share_lod
(
x
);
out
->
set_dims
(
phi
::
make_ddim
(
out_dims
));
if
(
out_dims
[
0
]
==
x_dim
[
0
])
{
// Only pass LoD when the first dimension is equal between
// output and input.
out
->
share_lod
(
input
);
}
out
->
set_dtype
(
input
.
dtype
());
}
void
ReshapeInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
shape
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
&
shape_data
=
shape
.
GetData
();
PADDLE_ENFORCE_NOT_NULL
(
out
,
phi
::
errors
::
InvalidArgument
(
"Output(Out) of ReshapeOp should not be null."
));
if
(
!
config
.
is_runtime
&&
shape
.
FromTensor
())
{
out
->
set_dims
(
phi
::
make_ddim
(
shape_data
));
out
->
share_lod
(
x
);
return
;
}
PADDLE_ENFORCE_GT
(
shape_data
.
size
(),
0
,
void
PixelShuffleInferMeta
(
const
MetaTensor
&
x
,
int
upscale_factor
,
const
std
::
string
&
data_format
,
MetaTensor
*
out
)
{
auto
input_dims
=
x
.
dims
();
PADDLE_ENFORCE_EQ
(
input_dims
.
size
(),
4
,
phi
::
errors
::
InvalidArgument
(
"
The shape's size in ReshapeOp can't be zero."
));
InferMetaFromVecValue
(
x
,
shape_data
,
out
);
}
"
Input should be a 4-D tensor of format [N, C, H, W] "
"or [N, H, W, C], but got %u."
,
input_dims
.
size
()));
void
ReshapeWithXShapeInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
shape
,
MetaTensor
*
xshape
,
MetaTensor
*
out
,
MetaConfig
config
)
{
PADDLE_ENFORCE_NOT_NULL
(
xshape
,
phi
::
errors
::
InvalidArgument
(
"Output(XShape) of ReshapeOp should not be null."
));
const
auto
&
x_dims
=
x
.
dims
();
std
::
vector
<
int64_t
>
xshape_dims
(
x_dims
.
size
()
+
1
);
xshape_dims
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
xshape_dims
[
i
+
1
]
=
x_dims
[
i
];
const
bool
channel_last
=
(
data_format
==
"NHWC"
);
if
(
!
channel_last
)
{
PADDLE_ENFORCE_EQ
(
input_dims
[
1
]
%
(
upscale_factor
*
upscale_factor
),
0
,
phi
::
errors
::
InvalidArgument
(
"The square of upscale_factor[%u] should divide the "
"number of channel[%u]"
,
upscale_factor
*
upscale_factor
,
input_dims
[
1
]));
}
else
{
PADDLE_ENFORCE_EQ
(
input_dims
[
3
]
%
(
upscale_factor
*
upscale_factor
),
0
,
phi
::
errors
::
InvalidArgument
(
"The square of upscale_factor[%u] should divide the "
"number of channel[%u]"
,
upscale_factor
*
upscale_factor
,
input_dims
[
3
]));
}
xshape
->
set_dims
(
phi
::
make_ddim
(
xshape_dims
));
xshape
->
share_lod
(
x
);
ReshapeInferMeta
(
x
,
shape
,
out
,
config
);
auto
output_dims
=
input_dims
;
output_dims
[
0
]
=
input_dims
[
0
];
if
(
!
channel_last
)
{
output_dims
[
1
]
=
input_dims
[
1
]
/
(
upscale_factor
*
upscale_factor
);
output_dims
[
2
]
=
input_dims
[
2
]
*
upscale_factor
;
output_dims
[
3
]
=
input_dims
[
3
]
*
upscale_factor
;
}
else
{
output_dims
[
1
]
=
input_dims
[
1
]
*
upscale_factor
;
output_dims
[
2
]
=
input_dims
[
2
]
*
upscale_factor
;
output_dims
[
3
]
=
input_dims
[
3
]
/
(
upscale_factor
*
upscale_factor
);
}
out
->
set_dtype
(
x
.
dtype
());
out
->
set_dims
(
output_dims
);
}
/* Why not use SumRawInferMeta directly?
Because we need make InferMetaFunction's args follow the design of api.yaml
*/
void
SumInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
DataType
dtype
,
bool
keep_dim
,
MetaTensor
*
out
)
{
bool
reduce_all
=
false
;
SumRawInferMeta
(
x
,
axis
,
keep_dim
,
reduce_all
,
dtype
,
out
);
void
RealAndImagInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
dtype
::
ToReal
(
x
.
dtype
()));
out
->
set_layout
(
x
.
layout
());
}
DDim
ReduceInferDim
(
const
MetaTensor
&
x
,
...
...
@@ -584,29 +750,12 @@ DDim ReduceInferDim(const MetaTensor& x,
return
out_dim
;
}
void
SumRaw
InferMeta
(
const
MetaTensor
&
x
,
void
Reduce
InferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
bool
reduce_all
,
DataType
dtype
,
MetaTensor
*
out
)
{
DDim
out_dim
=
ReduceInferDim
(
x
,
axis
,
keep_dim
,
reduce_all
);
DataType
out_dtype
;
if
(
dtype
!=
DataType
::
UNDEFINED
)
{
out_dtype
=
dtype
;
}
else
{
if
(
x
.
dtype
()
==
DataType
::
BOOL
||
x
.
dtype
()
==
DataType
::
INT32
||
x
.
dtype
()
==
DataType
::
INT64
)
{
out_dtype
=
DataType
::
INT64
;
}
else
{
out_dtype
=
x
.
dtype
();
}
}
out
->
set_dims
(
out_dim
);
out
->
set_dtype
(
out_dtype
);
out
->
set_layout
(
x
.
layout
());
bool
reduce_all
=
false
;
ReduceInferMetaBase
(
x
,
axis
,
keep_dim
,
reduce_all
,
out
);
}
void
ReduceInferMetaBase
(
const
MetaTensor
&
x
,
...
...
@@ -620,33 +769,109 @@ void ReduceInferMetaBase(const MetaTensor& x,
out
->
set_layout
(
x
.
layout
());
}
void
ReduceInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
MetaTensor
*
out
)
{
bool
reduce_all
=
false
;
ReduceInferMetaBase
(
x
,
axis
,
keep_dim
,
reduce_all
,
out
);
void
ReshapeInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
shape
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
&
shape_data
=
shape
.
GetData
();
PADDLE_ENFORCE_NOT_NULL
(
out
,
phi
::
errors
::
InvalidArgument
(
"Output(Out) of ReshapeOp should not be null."
));
if
(
!
config
.
is_runtime
&&
shape
.
FromTensor
())
{
out
->
set_dims
(
phi
::
make_ddim
(
shape_data
));
out
->
share_lod
(
x
);
return
;
}
PADDLE_ENFORCE_GT
(
shape_data
.
size
(),
0
,
phi
::
errors
::
InvalidArgument
(
"The shape's size in ReshapeOp can't be zero."
));
InferMetaFromVecValue
(
x
,
shape_data
,
out
);
}
void
TransferLayoutInferMeta
(
const
MetaTensor
&
x
,
DataLayout
layout
,
MetaTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
layout
);
void
ReshapeWithXShapeInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
shape
,
MetaTensor
*
xshape
,
MetaTensor
*
out
,
MetaConfig
config
)
{
PADDLE_ENFORCE_NOT_NULL
(
xshape
,
phi
::
errors
::
InvalidArgument
(
"Output(XShape) of ReshapeOp should not be null."
));
const
auto
&
x_dims
=
x
.
dims
();
std
::
vector
<
int64_t
>
xshape_dims
(
x_dims
.
size
()
+
1
);
xshape_dims
[
0
]
=
0
;
for
(
int
i
=
0
;
i
<
x_dims
.
size
();
++
i
)
{
xshape_dims
[
i
+
1
]
=
x_dims
[
i
];
}
xshape
->
set_dims
(
phi
::
make_ddim
(
xshape_dims
));
xshape
->
share_lod
(
x
);
ReshapeInferMeta
(
x
,
shape
,
out
,
config
);
}
void
SplitInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
num_or_sections
,
const
Scalar
&
axis
,
std
::
vector
<
MetaTensor
*>
out
,
MetaConfig
config
)
{
int
axis_value
=
axis
.
to
<
int
>
();
int
rank
=
x
.
dims
().
size
();
PADDLE_ENFORCE_EQ
(
axis_value
>=
-
rank
&&
axis_value
<
rank
,
true
,
phi
::
errors
::
InvalidArgument
(
void
ShardIndexInferMeta
(
const
MetaTensor
&
in
,
int
index_num
,
int
nshards
,
int
shard_id
,
int
ignore_value
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
x_dims
=
in
.
dims
();
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
phi
::
errors
::
InvalidArgument
(
"Rank of Input(X) should be at least 2, "
"but the value given is %d."
,
x_dims
.
size
()));
if
(
config
.
is_runtime
||
x_dims
[
x_dims
.
size
()
-
1
]
>
0
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
x_dims
.
size
()
-
1
],
1U
,
phi
::
errors
::
InvalidArgument
(
"The last dimension of Input(X) should be 1, "
"but the value given is %d."
,
x_dims
[
x_dims
.
size
()
-
1
]));
}
out
->
set_dims
(
x_dims
);
out
->
share_lod
(
in
);
out
->
set_dtype
(
in
.
dtype
());
}
void
SizeInferMeta
(
const
MetaTensor
&
input
,
MetaTensor
*
out
)
{
out
->
set_dtype
(
DataType
::
INT64
);
out
->
set_dims
({
1
});
}
void
SoftmaxInferMeta
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
)
{
auto
dim_x
=
x
.
dims
();
auto
rank_x
=
dim_x
.
size
();
PADDLE_ENFORCE_GE
(
axis
,
-
rank_x
,
phi
::
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X)."
));
PADDLE_ENFORCE_LT
(
axis
,
rank_x
,
phi
::
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X)."
));
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
x
.
dtype
());
out
->
share_lod
(
x
);
}
void
SplitInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
num_or_sections
,
const
Scalar
&
axis
,
std
::
vector
<
MetaTensor
*>
out
,
MetaConfig
config
)
{
int
axis_value
=
axis
.
to
<
int
>
();
int
rank
=
x
.
dims
().
size
();
PADDLE_ENFORCE_EQ
(
axis_value
>=
-
rank
&&
axis_value
<
rank
,
true
,
phi
::
errors
::
InvalidArgument
(
"The axis is expected to be in range of [%d, %d), but got %d"
,
-
rank
,
rank
,
...
...
@@ -767,22 +992,108 @@ void SplitInferMeta(const MetaTensor& x,
}
}
void
UnbindInferMeta
(
const
MetaTensor
&
x
,
int
axis
,
std
::
vector
<
MetaTensor
>*
outs
)
{
auto
in_dims
=
x
.
dims
();
std
::
vector
<
int
>
out_dim
;
axis
=
axis
<
0
?
in_dims
.
size
()
+
axis
:
axis
;
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
if
(
i
!=
axis
)
out_dim
.
push_back
(
in_dims
[
i
]);
/* Why not use SumRawInferMeta directly?
Because we need make InferMetaFunction's args follow the design of api.yaml
*/
void
SumInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
DataType
dtype
,
bool
keep_dim
,
MetaTensor
*
out
)
{
bool
reduce_all
=
false
;
SumRawInferMeta
(
x
,
axis
,
keep_dim
,
reduce_all
,
dtype
,
out
);
}
void
SumRawInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
bool
reduce_all
,
DataType
dtype
,
MetaTensor
*
out
)
{
DDim
out_dim
=
ReduceInferDim
(
x
,
axis
,
keep_dim
,
reduce_all
);
DataType
out_dtype
;
if
(
dtype
!=
DataType
::
UNDEFINED
)
{
out_dtype
=
dtype
;
}
else
{
if
(
x
.
dtype
()
==
DataType
::
BOOL
||
x
.
dtype
()
==
DataType
::
INT32
||
x
.
dtype
()
==
DataType
::
INT64
)
{
out_dtype
=
DataType
::
INT64
;
}
else
{
out_dtype
=
x
.
dtype
();
}
}
auto
out_dims
=
phi
::
make_ddim
(
out_dim
);
for
(
size_t
i
=
0
;
i
<
outs
->
size
();
++
i
)
{
(
*
outs
)[
i
].
set_dtype
(
x
.
dtype
());
(
*
outs
)[
i
].
set_dims
(
out_dims
);
(
*
outs
)[
i
].
set_layout
(
x
.
layout
());
(
*
outs
)[
i
].
share_lod
(
x
);
out
->
set_dims
(
out_dim
);
out
->
set_dtype
(
out_dtype
);
out
->
set_layout
(
x
.
layout
());
}
void
TileInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
repeat_times
,
MetaTensor
*
out
,
MetaConfig
config
)
{
#define MAX_RANK_SUPPORTED 6
auto
repeat_times_data
=
repeat_times
.
GetData
();
auto
x_dims
=
x
.
dims
();
if
(
repeat_times_data
.
size
()
==
0
)
{
repeat_times_data
=
std
::
vector
<
int64_t
>
(
x_dims
.
size
(),
-
1
);
}
PADDLE_ENFORCE_LE
(
x_dims
.
size
(),
MAX_RANK_SUPPORTED
,
errors
::
InvalidArgument
(
"The rank of the input 'x' for tile op "
"must not be greater than %d, but the value received is %d."
,
MAX_RANK_SUPPORTED
,
x_dims
.
size
()));
PADDLE_ENFORCE_LE
(
repeat_times_data
.
size
(),
MAX_RANK_SUPPORTED
,
errors
::
InvalidArgument
(
"The size of the shape of input 'repeat_times' for tile op "
"must not be greater than %d, but the value received is %d."
,
MAX_RANK_SUPPORTED
,
repeat_times_data
.
size
()));
PADDLE_ENFORCE_GE
(
repeat_times_data
.
size
(),
1
,
errors
::
InvalidArgument
(
"The size of the shape of input 'repeat_times' for tile op "
"must be positive integers, but the value received is %d."
,
repeat_times_data
.
size
()));
auto
out_rank
=
std
::
max
(
static_cast
<
size_t
>
(
x_dims
.
size
()),
repeat_times_data
.
size
());
std
::
vector
<
int64_t
>
out_shape
(
out_rank
);
auto
x_dim_vec
=
phi
::
vectorize
<
int
>
(
x_dims
);
if
(
x_dim_vec
.
size
()
>
repeat_times_data
.
size
())
{
auto
diff
=
x_dim_vec
.
size
()
-
repeat_times_data
.
size
();
repeat_times_data
.
insert
(
repeat_times_data
.
begin
(),
diff
,
-
1
);
}
else
{
auto
diff
=
repeat_times_data
.
size
()
-
x_dim_vec
.
size
();
x_dim_vec
.
insert
(
x_dim_vec
.
begin
(),
diff
,
-
1
);
}
for
(
size_t
i
=
0
;
i
<
repeat_times_data
.
size
();
++
i
)
{
if
(
x_dim_vec
[
i
]
==
-
1
||
repeat_times_data
[
i
]
==
-
1
)
{
out_shape
[
i
]
=
-
1
;
}
else
{
PADDLE_ENFORCE_GT
(
repeat_times_data
[
i
],
0
,
errors
::
InvalidArgument
(
"Every element of the input 'repeat_times' for tile op must be "
"greater than 0, but the value given is %d."
,
repeat_times_data
[
i
]));
out_shape
[
i
]
=
x_dim_vec
[
i
]
*
repeat_times_data
[
i
];
}
}
out
->
set_dims
(
phi
::
make_ddim
(
out_shape
));
if
(
out_shape
[
0
]
==
x_dims
[
0
])
{
out
->
share_lod
(
x
);
}
}
...
...
@@ -840,79 +1151,112 @@ void TraceInferMeta(
out
->
set_dtype
(
x
.
dtype
());
}
void
DiagonalInferMeta
(
const
MetaTensor
&
input
,
int
offset
,
int
axis1
,
int
axis2
,
MetaTensor
*
out
)
{
auto
x_dims
=
input
.
dims
();
int
offset_
=
offset
;
int
axis1_
=
axis1
<
0
?
x_dims
.
size
()
+
axis1
:
axis1
;
int
axis2_
=
axis2
<
0
?
x_dims
.
size
()
+
axis2
:
axis2
;
void
TransferLayoutInferMeta
(
const
MetaTensor
&
x
,
DataLayout
layout
,
MetaTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
x
.
dtype
());
out
->
set_layout
(
layout
);
}
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
phi
::
errors
::
OutOfRange
(
"Input's dim is out of range (expected at "
"least 2 dimensions, but got %ld)."
,
x_dims
.
size
()));
PADDLE_ENFORCE_LT
(
axis1_
,
x_dims
.
size
(),
phi
::
errors
::
OutOfRange
(
"Attr(axis1) is out of range (expected to be in range of [%ld, "
"%ld], but got %ld)."
,
-
(
x_dims
.
size
()),
(
x_dims
.
size
()
-
1
),
axis1
));
PADDLE_ENFORCE_LT
(
axis2_
,
x_dims
.
size
(),
phi
::
errors
::
OutOfRange
(
"Attr(axis2) is out of range (expected to be in range of [%ld, "
"%ld], but got %ld)."
,
-
(
x_dims
.
size
()),
(
x_dims
.
size
()
-
1
),
axis2
));
PADDLE_ENFORCE_NE
(
axis1_
,
axis2_
,
phi
::
errors
::
InvalidArgument
(
"The dimensions should not be identical "
"%d vs %d."
,
axis1
,
axis2
));
void
TransposeInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int
>&
axis
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
size_t
x_rank
=
x_dims
.
size
();
size_t
axis_size
=
axis
.
size
();
auto
out_dims
=
vectorize
(
x_dims
);
// from out_dims get the dim size of axis1_.
auto
axis1_size
=
out_dims
[
axis1_
];
auto
axis2_size
=
out_dims
[
axis2_
];
// delete two dims by attr axis1 and axis2 from out_dims.
/* example:
out_dim = [2, 3, 4];
axis1 = 0;
axis2 = 1;
according to the attr of axis1 and axis2, we get:
out_dim = [4].
*/
out_dims
.
erase
(
out_dims
.
begin
()
+
std
::
max
(
axis1_
,
axis2_
));
out_dims
.
erase
(
out_dims
.
begin
()
+
std
::
min
(
axis1_
,
axis2_
));
PADDLE_ENFORCE_EQ
(
x_rank
,
axis_size
,
errors
::
InvalidArgument
(
"The input tensor's dimension "
"should be equal to the axis's size. "
"But received input tensor's dimension is %d, "
"axis's size is %d"
,
x_rank
,
axis_size
));
if
(
offset_
==
0
)
{
out_dims
.
push_back
(
std
::
min
(
axis1_size
,
axis2_size
));
}
else
if
(
offset_
>
0
)
{
if
((
axis2_size
-
offset_
)
>
0
)
{
out_dims
.
push_back
(
std
::
min
(
axis1_size
,
axis2_size
-
offset_
));
}
else
{
out_dims
.
push_back
(
0
);
}
}
else
{
if
((
axis1_size
+
offset_
)
>
0
)
{
out_dims
.
push_back
(
std
::
min
(
axis1_size
+
offset_
,
axis2_size
));
}
else
{
out_dims
.
push_back
(
0
);
}
std
::
vector
<
int
>
count
(
axis_size
,
0
);
for
(
size_t
i
=
0
;
i
<
axis_size
;
i
++
)
{
PADDLE_ENFORCE_GE
(
axis
[
i
],
0
,
errors
::
InvalidArgument
(
"The axis should be greater than or equal to 0."
"But received %d of axis[%d]"
,
axis
[
i
],
i
));
PADDLE_ENFORCE_EQ
(
axis
[
i
]
<
static_cast
<
int
>
(
axis_size
)
&&
++
count
[
axis
[
i
]]
==
1
,
true
,
errors
::
InvalidArgument
(
"Each element of Attribute axis should "
"be a unique value range from 0 to (dims - 1), "
"where the dims is the axis's size, "
"unique value means this axis value can appear only once. "
"But received axis[%d] is %d, axis_size is %d, "
"count[axis[%d]] is %d"
,
i
,
axis
[
i
],
axis_size
,
i
,
count
[
axis
[
i
]]));
}
out
->
set_dims
(
phi
::
make_ddim
(
out_dims
));
phi
::
DDim
out_dims
(
x_dims
);
for
(
size_t
i
=
0
;
i
<
axis_size
;
++
i
)
{
out_dims
[
i
]
=
x_dims
[
axis
[
i
]];
}
out
->
set_dims
(
out_dims
);
out
->
set_dtype
(
x
.
dtype
());
}
void
UnbindInferMeta
(
const
MetaTensor
&
x
,
int
axis
,
std
::
vector
<
MetaTensor
>*
outs
)
{
auto
in_dims
=
x
.
dims
();
std
::
vector
<
int
>
out_dim
;
axis
=
axis
<
0
?
in_dims
.
size
()
+
axis
:
axis
;
for
(
int
i
=
0
;
i
<
in_dims
.
size
();
++
i
)
{
if
(
i
!=
axis
)
out_dim
.
push_back
(
in_dims
[
i
]);
}
auto
out_dims
=
phi
::
make_ddim
(
out_dim
);
for
(
size_t
i
=
0
;
i
<
outs
->
size
();
++
i
)
{
(
*
outs
)[
i
].
set_dtype
(
x
.
dtype
());
(
*
outs
)[
i
].
set_dims
(
out_dims
);
(
*
outs
)[
i
].
set_layout
(
x
.
layout
());
(
*
outs
)[
i
].
share_lod
(
x
);
}
}
void
UnchangedInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
)
{
out
->
share_meta
(
x
);
}
// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void
UnchangedInferMetaCheckAxis
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
)
{
auto
rank
=
x
.
dims
().
size
();
PADDLE_ENFORCE_GE
(
axis
,
-
rank
,
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X). But received axis: %d, R: %d."
,
axis
,
rank
));
PADDLE_ENFORCE_LT
(
axis
,
rank
,
phi
::
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X). But received axis: %d, R: %d."
,
axis
,
rank
));
out
->
share_meta
(
x
);
}
void
UnfoldInferMeta
(
const
MetaTensor
&
x
,
...
...
@@ -1073,303 +1417,6 @@ void UnfoldInferMeta(const MetaTensor& x,
out
->
set_dims
(
phi
::
make_ddim
(
out_dims
));
}
void
DiagInferMeta
(
const
MetaTensor
&
x
,
int
offset
,
float
padding_value
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
if
(
x_dims
.
size
()
==
1UL
)
{
int64_t
size_
=
x_dims
[
0
]
+
std
::
abs
(
offset
);
out
->
set_dims
({
size_
,
size_
});
out
->
set_dtype
(
x
.
dtype
());
}
else
if
(
x_dims
.
size
()
==
2UL
)
{
int64_t
size_
=
0
;
if
(
offset
>=
0
)
{
// Note(LutaoChu): Do not use std::min here, otherwise the calculation
// of `size_` will have unexpected result on Windows Python3.8
if
(
x_dims
[
0
]
<
x_dims
[
1
]
-
offset
)
{
size_
=
x_dims
[
0
];
}
else
{
size_
=
x_dims
[
1
]
-
offset
;
}
}
else
{
// Note(LutaoChu): Do not use std::min here, otherwise the calculation
// of `size_` will have unexpected result on Windows Python3.8
if
(
x_dims
[
0
]
+
offset
<
x_dims
[
1
])
{
size_
=
x_dims
[
0
]
+
offset
;
}
else
{
size_
=
x_dims
[
1
];
}
}
out
->
set_dims
({
size_
});
out
->
set_dtype
(
x
.
dtype
());
}
else
{
PADDLE_THROW
(
phi
::
errors
::
InvalidArgument
(
"The input tensor X's dimensions of DiagV2Op should be either 1 or "
"2, but received %d."
,
x_dims
.
size
()));
}
}
void
ArgMinMaxInferMeta
(
const
MetaTensor
&
x
,
int64_t
axis
,
bool
keepdims
,
bool
flatten
,
int
dtype
,
MetaTensor
*
out
,
MetaConfig
config
)
{
const
auto
&
x_dims
=
x
.
dims
();
PADDLE_ENFORCE_GE
(
axis
,
-
x_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"'axis'(%d) must be greater than or equal to"
" -Rank(X)(%d)."
,
axis
,
-
x_dims
.
size
()));
PADDLE_ENFORCE_LT
(
axis
,
x_dims
.
size
(),
phi
::
errors
::
InvalidArgument
(
"'axis'(%d) must be less than Rank(X)(%d) of Input(X)."
,
axis
,
x_dims
.
size
()));
PADDLE_ENFORCE_EQ
(
(
dtype
<
0
||
dtype
==
2
||
dtype
==
3
),
true
,
phi
::
errors
::
InvalidArgument
(
"The attribute of dtype in argmin/argmax must be [%s] or [%s], but "
"received [%s]"
,
paddle
::
framework
::
DataTypeToString
(
paddle
::
framework
::
proto
::
VarType
::
INT32
),
paddle
::
framework
::
DataTypeToString
(
paddle
::
framework
::
proto
::
VarType
::
INT64
),
paddle
::
framework
::
DataTypeToString
(
static_cast
<
paddle
::
framework
::
proto
::
VarType
::
Type
>
(
dtype
))));
auto
x_rank
=
x_dims
.
size
();
if
(
axis
<
0
)
axis
+=
x_rank
;
if
(
config
.
is_runtime
)
{
if
(
dtype
==
paddle
::
framework
::
proto
::
VarType
::
INT32
)
{
int64_t
all_element_num
=
0
;
if
(
flatten
)
{
all_element_num
=
phi
::
product
(
x_dims
);
}
else
{
all_element_num
=
x_dims
[
axis
];
}
PADDLE_ENFORCE_LE
(
all_element_num
,
INT_MAX
,
phi
::
errors
::
InvalidArgument
(
"The element num of the argmin/argmax input at axis is "
"%d, is larger than int32 maximum value:%d, you must "
"set the dtype of argmin/argmax to 'int64'."
,
all_element_num
,
INT_MAX
));
}
}
std
::
vector
<
int64_t
>
vec
;
if
(
flatten
)
{
vec
.
emplace_back
(
static_cast
<
int64_t
>
(
1
));
}
else
{
for
(
int64_t
i
=
0
;
i
<
axis
;
i
++
)
vec
.
emplace_back
(
x_dims
[
i
]);
if
(
keepdims
)
{
vec
.
emplace_back
(
static_cast
<
int64_t
>
(
1
));
}
for
(
int64_t
i
=
axis
+
1
;
i
<
x_rank
;
i
++
)
vec
.
emplace_back
(
x_dims
[
i
]);
}
out
->
set_dims
(
phi
::
make_ddim
(
vec
));
if
(
dtype
==
2
)
{
out
->
set_dtype
(
DataType
::
INT32
);
}
else
if
(
dtype
==
3
)
{
out
->
set_dtype
(
DataType
::
INT64
);
}
}
void
SizeInferMeta
(
const
MetaTensor
&
input
,
MetaTensor
*
out
)
{
out
->
set_dtype
(
DataType
::
INT64
);
out
->
set_dims
({
1
});
}
void
PadInferMeta
(
const
MetaTensor
&
input
,
const
std
::
vector
<
int
>&
paddings
,
float
pad_value
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
x_dim
=
input
.
dims
();
PADDLE_ENFORCE_EQ
(
static_cast
<
int
>
(
paddings
.
size
()),
x_dim
.
size
()
*
2
,
phi
::
errors
::
InvalidArgument
(
"Size of 'paddings' dimension should be equal to 2 * size of "
"Input(X)'s dimension, but received (size of 'paddings' dimension "
"is) %d vs (2 * size of Input(X)'s dimension is) %d."
,
static_cast
<
int
>
(
paddings
.
size
()),
x_dim
.
size
()
*
2
));
for
(
size_t
i
=
0
;
i
<
paddings
.
size
();
++
i
)
{
PADDLE_ENFORCE_GE
(
paddings
[
i
],
0
,
phi
::
errors
::
InvalidArgument
(
"The element of 'paddings' should >= 0, but "
"received %d for index %d."
,
paddings
[
i
],
static_cast
<
int
>
(
i
)));
}
std
::
vector
<
int64_t
>
out_dims
(
x_dim
.
size
());
for
(
int
i
=
0
;
i
<
x_dim
.
size
();
++
i
)
{
if
((
!
config
.
is_runtime
)
&&
(
x_dim
[
i
]
==
-
1
))
{
out_dims
[
i
]
=
-
1
;
}
else
{
out_dims
[
i
]
=
x_dim
[
i
]
+
paddings
[
i
*
2
]
+
paddings
[
i
*
2
+
1
];
}
}
out
->
set_dims
(
phi
::
make_ddim
(
out_dims
));
if
(
out_dims
[
0
]
==
x_dim
[
0
])
{
// Only pass LoD when the first dimension is equal between
// output and input.
out
->
share_lod
(
input
);
}
out
->
set_dtype
(
input
.
dtype
());
}
void
IsfiniteInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
)
{
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
DataType
::
BOOL
);
}
void
PixelShuffleInferMeta
(
const
MetaTensor
&
x
,
int
upscale_factor
,
const
std
::
string
&
data_format
,
MetaTensor
*
out
)
{
auto
input_dims
=
x
.
dims
();
PADDLE_ENFORCE_EQ
(
input_dims
.
size
(),
4
,
phi
::
errors
::
InvalidArgument
(
"Input should be a 4-D tensor of format [N, C, H, W] "
"or [N, H, W, C], but got %u."
,
input_dims
.
size
()));
const
bool
channel_last
=
(
data_format
==
"NHWC"
);
if
(
!
channel_last
)
{
PADDLE_ENFORCE_EQ
(
input_dims
[
1
]
%
(
upscale_factor
*
upscale_factor
),
0
,
phi
::
errors
::
InvalidArgument
(
"The square of upscale_factor[%u] should divide the "
"number of channel[%u]"
,
upscale_factor
*
upscale_factor
,
input_dims
[
1
]));
}
else
{
PADDLE_ENFORCE_EQ
(
input_dims
[
3
]
%
(
upscale_factor
*
upscale_factor
),
0
,
phi
::
errors
::
InvalidArgument
(
"The square of upscale_factor[%u] should divide the "
"number of channel[%u]"
,
upscale_factor
*
upscale_factor
,
input_dims
[
3
]));
}
auto
output_dims
=
input_dims
;
output_dims
[
0
]
=
input_dims
[
0
];
if
(
!
channel_last
)
{
output_dims
[
1
]
=
input_dims
[
1
]
/
(
upscale_factor
*
upscale_factor
);
output_dims
[
2
]
=
input_dims
[
2
]
*
upscale_factor
;
output_dims
[
3
]
=
input_dims
[
3
]
*
upscale_factor
;
}
else
{
output_dims
[
1
]
=
input_dims
[
1
]
*
upscale_factor
;
output_dims
[
2
]
=
input_dims
[
2
]
*
upscale_factor
;
output_dims
[
3
]
=
input_dims
[
3
]
/
(
upscale_factor
*
upscale_factor
);
}
out
->
set_dtype
(
x
.
dtype
());
out
->
set_dims
(
output_dims
);
}
void
TransposeInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int
>&
axis
,
MetaTensor
*
out
)
{
auto
x_dims
=
x
.
dims
();
size_t
x_rank
=
x_dims
.
size
();
size_t
axis_size
=
axis
.
size
();
PADDLE_ENFORCE_EQ
(
x_rank
,
axis_size
,
errors
::
InvalidArgument
(
"The input tensor's dimension "
"should be equal to the axis's size. "
"But received input tensor's dimension is %d, "
"axis's size is %d"
,
x_rank
,
axis_size
));
std
::
vector
<
int
>
count
(
axis_size
,
0
);
for
(
size_t
i
=
0
;
i
<
axis_size
;
i
++
)
{
PADDLE_ENFORCE_GE
(
axis
[
i
],
0
,
errors
::
InvalidArgument
(
"The axis should be greater than or equal to 0."
"But received %d of axis[%d]"
,
axis
[
i
],
i
));
PADDLE_ENFORCE_EQ
(
axis
[
i
]
<
static_cast
<
int
>
(
axis_size
)
&&
++
count
[
axis
[
i
]]
==
1
,
true
,
errors
::
InvalidArgument
(
"Each element of Attribute axis should "
"be a unique value range from 0 to (dims - 1), "
"where the dims is the axis's size, "
"unique value means this axis value can appear only once. "
"But received axis[%d] is %d, axis_size is %d, "
"count[axis[%d]] is %d"
,
i
,
axis
[
i
],
axis_size
,
i
,
count
[
axis
[
i
]]));
}
phi
::
DDim
out_dims
(
x_dims
);
for
(
size_t
i
=
0
;
i
<
axis_size
;
++
i
)
{
out_dims
[
i
]
=
x_dims
[
axis
[
i
]];
}
out
->
set_dims
(
out_dims
);
out
->
set_dtype
(
x
.
dtype
());
}
void
EighInferMeta
(
const
MetaTensor
&
x
,
const
std
::
string
&
uplo
,
MetaTensor
*
out_w
,
MetaTensor
*
out_v
)
{
auto
input_dim
=
x
.
dims
();
auto
rank
=
input_dim
.
size
();
PADDLE_ENFORCE_GE
(
rank
,
2
,
phi
::
errors
::
InvalidArgument
(
"The Input(X) should have at least 2 dimensions."
"But received a %d dimension tensor."
,
rank
));
PADDLE_ENFORCE_EQ
(
input_dim
[
rank
-
2
],
input_dim
[
rank
-
1
],
phi
::
errors
::
InvalidArgument
(
"Eigh op is designed for square matrix, consequently"
"inner-most 2 dimensions of Input(X) should be symmetric."
"But received X's shape[-2] = %d and shape[-1] = %d."
,
input_dim
[
rank
-
2
],
input_dim
[
rank
-
1
]));
std
::
vector
<
int64_t
>
values_dim
;
for
(
auto
i
=
0
;
i
<
rank
-
1
;
i
++
)
{
values_dim
.
emplace_back
(
input_dim
[
i
]);
}
out_w
->
set_dims
(
phi
::
make_ddim
(
values_dim
));
out_v
->
set_dims
(
input_dim
);
}
void
WhereIndexInferMeta
(
const
MetaTensor
&
condition
,
MetaTensor
*
out
)
{
auto
rank
=
condition
.
dims
().
size
();
PADDLE_ENFORCE_GE
(
...
...
@@ -1381,53 +1428,6 @@ void WhereIndexInferMeta(const MetaTensor& condition, MetaTensor* out) {
out
->
set_dtype
(
DataType
::
INT64
);
}
void
ShardIndexInferMeta
(
const
MetaTensor
&
in
,
int
index_num
,
int
nshards
,
int
shard_id
,
int
ignore_value
,
MetaTensor
*
out
,
MetaConfig
config
)
{
auto
x_dims
=
in
.
dims
();
PADDLE_ENFORCE_GE
(
x_dims
.
size
(),
2
,
phi
::
errors
::
InvalidArgument
(
"Rank of Input(X) should be at least 2, "
"but the value given is %d."
,
x_dims
.
size
()));
if
(
config
.
is_runtime
||
x_dims
[
x_dims
.
size
()
-
1
]
>
0
)
{
PADDLE_ENFORCE_EQ
(
x_dims
[
x_dims
.
size
()
-
1
],
1U
,
phi
::
errors
::
InvalidArgument
(
"The last dimension of Input(X) should be 1, "
"but the value given is %d."
,
x_dims
[
x_dims
.
size
()
-
1
]));
}
out
->
set_dims
(
x_dims
);
out
->
share_lod
(
in
);
out
->
set_dtype
(
in
.
dtype
());
}
void
SoftmaxInferMeta
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
)
{
auto
dim_x
=
x
.
dims
();
auto
rank_x
=
dim_x
.
size
();
PADDLE_ENFORCE_GE
(
axis
,
-
rank_x
,
phi
::
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X)."
));
PADDLE_ENFORCE_LT
(
axis
,
rank_x
,
phi
::
errors
::
InvalidArgument
(
"Attr(axis) value should be in range [-R, R-1], "
"R is the rank of Input(X)."
));
out
->
set_dims
(
x
.
dims
());
out
->
set_dtype
(
x
.
dtype
());
out
->
share_lod
(
x
);
}
}
// namespace phi
PD_REGISTER_INFER_META_FN
(
copy_to
,
phi
::
CopyToInferMeta
);
...
...
paddle/phi/infermeta/unary.h
浏览文件 @
f7765991
...
...
@@ -32,32 +32,20 @@ class MetaConfig;
// Because functions in this file not only can infer shape, but also need
// infer lod or other useful data.
void
ArgMinMaxInferMeta
(
const
MetaTensor
&
x
,
int64_t
axis
,
bool
keepdims
,
bool
flatten
,
int
dtype
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
ArgsortInferMeta
(
const
MetaTensor
&
input
,
int
axis
,
bool
descending
,
MetaTensor
*
output
,
MetaTensor
*
indices
);
void
UnchangedInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
);
// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void
UnchangedInferMetaCheckAxis
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
);
void
RealAndImagInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
);
void
FlattenInferMeta
(
const
MetaTensor
&
x
,
int
start_axis
,
int
stop_axis
,
MetaTensor
*
out
);
void
GumbelSoftmaxInferMeta
(
const
MetaTensor
&
x
,
float
temperature
,
bool
hard
,
int
axis
,
MetaTensor
*
out
);
void
CastInferMeta
(
const
MetaTensor
&
x
,
DataType
out_dtype
,
MetaTensor
*
out
);
void
CholeskyInferMeta
(
const
MetaTensor
&
x
,
bool
upper
,
MetaTensor
*
out
);
...
...
@@ -76,6 +64,30 @@ void CumsumInferMeta(const MetaTensor& x,
bool
reverse
,
MetaTensor
*
out
);
void
DiagInferMeta
(
const
MetaTensor
&
x
,
int
offset
,
float
padding_value
,
MetaTensor
*
out
);
void
DiagonalInferMeta
(
const
MetaTensor
&
input
,
int
offset
,
int
axis1
,
int
axis2
,
MetaTensor
*
out
);
void
EighInferMeta
(
const
MetaTensor
&
x
,
const
std
::
string
&
uplo
,
MetaTensor
*
out_w
,
MetaTensor
*
out_v
);
void
FlattenInferMeta
(
const
MetaTensor
&
x
,
int
start_axis
,
int
stop_axis
,
MetaTensor
*
out
);
void
GumbelSoftmaxInferMeta
(
const
MetaTensor
&
x
,
float
temperature
,
bool
hard
,
int
axis
,
MetaTensor
*
out
);
void
IncrementInferMeta
(
const
MetaTensor
&
x
,
float
value
,
MetaTensor
*
out
);
void
InferMetaFromVecValue
(
const
MetaTensor
&
x
,
...
...
@@ -84,11 +96,37 @@ void InferMetaFromVecValue(const MetaTensor& x,
void
IsEmptyInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
);
void
IsfiniteInferMeta
(
const
MetaTensor
&
input
,
MetaTensor
*
out
);
void
MultinomialInferMeta
(
const
MetaTensor
&
x
,
int
num_samples
,
bool
replacement
,
MetaTensor
*
out
);
void
PadInferMeta
(
const
MetaTensor
&
input
,
const
std
::
vector
<
int
>&
paddings
,
float
pad_value
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
PixelShuffleInferMeta
(
const
MetaTensor
&
x
,
int
upscale_factor
,
const
std
::
string
&
data_format
,
MetaTensor
*
out
);
void
RealAndImagInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
);
void
ReduceInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
MetaTensor
*
out
);
void
ReduceInferMetaBase
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
bool
reduce_all
,
MetaTensor
*
out
);
void
ReshapeInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
shape
,
MetaTensor
*
out
,
...
...
@@ -100,28 +138,23 @@ void ReshapeWithXShapeInferMeta(const MetaTensor& x,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
TileInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
repeat_times
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
ShardIndexInferMeta
(
const
MetaTensor
&
in
,
int
index_num
,
int
nshards
,
int
shard_id
,
int
ignore_value
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
SumRawInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
bool
reduce_all
,
DataType
dtype
,
MetaTensor
*
out
);
void
SizeInferMeta
(
const
MetaTensor
&
input
,
MetaTensor
*
out
);
void
ReduceInferMetaBase
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
bool
reduce_all
,
MetaTensor
*
out
);
void
SoftmaxInferMeta
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
);
void
ReduceInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
MetaTensor
*
out
);
void
SplitInferMeta
(
const
MetaTensor
&
x_meta
,
const
ScalarArray
&
num_or_sections
,
const
Scalar
&
axis
,
std
::
vector
<
MetaTensor
*>
out
,
MetaConfig
config
=
MetaConfig
());
void
SumInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
...
...
@@ -129,21 +162,39 @@ void SumInferMeta(const MetaTensor& x,
bool
keep_dim
,
MetaTensor
*
out
);
void
SumRawInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int64_t
>&
axis
,
bool
keep_dim
,
bool
reduce_all
,
DataType
dtype
,
MetaTensor
*
out
);
void
TileInferMeta
(
const
MetaTensor
&
x
,
const
ScalarArray
&
repeat_times
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
TraceInferMeta
(
const
MetaTensor
&
x
,
int
offset
,
int
axis1
,
int
axis2
,
MetaTensor
*
out
);
void
TransferLayoutInferMeta
(
const
MetaTensor
&
x
,
DataLayout
layout
,
MetaTensor
*
out
);
void
SplitInferMeta
(
const
MetaTensor
&
x_meta
,
const
ScalarArray
&
num_or_sections
,
const
Scalar
&
axis
,
std
::
vector
<
MetaTensor
*>
out
,
MetaConfig
config
=
MetaConfig
());
void
TransposeInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int
>&
axis
,
MetaTensor
*
out
);
void
UnbindInferMeta
(
const
MetaTensor
&
x
,
int
axis
,
std
::
vector
<
MetaTensor
>*
outs
);
void
TraceInferMeta
(
const
MetaTensor
&
x
,
int
offset
,
int
axis1
,
int
axis2
,
MetaTensor
*
out
);
void
UnchangedInferMeta
(
const
MetaTensor
&
x
,
MetaTensor
*
out
);
// meta x -> out without change, check if axis in range [-Rank(x), Rank(x)-1]
void
UnchangedInferMetaCheckAxis
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
);
void
UnfoldInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int
>&
kernel_sizes
,
...
...
@@ -153,56 +204,6 @@ void UnfoldInferMeta(const MetaTensor& x,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
DiagInferMeta
(
const
MetaTensor
&
x
,
int
offset
,
float
padding_value
,
MetaTensor
*
out
);
void
ArgMinMaxInferMeta
(
const
MetaTensor
&
x
,
int64_t
axis
,
bool
keepdims
,
bool
flatten
,
int
dtype
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
SizeInferMeta
(
const
MetaTensor
&
input
,
MetaTensor
*
out
);
void
PadInferMeta
(
const
MetaTensor
&
input
,
const
std
::
vector
<
int
>&
paddings
,
float
pad_value
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
DiagonalInferMeta
(
const
MetaTensor
&
input
,
int
offset
,
int
axis1
,
int
axis2
,
MetaTensor
*
out
);
void
PixelShuffleInferMeta
(
const
MetaTensor
&
x
,
int
upscale_factor
,
const
std
::
string
&
data_format
,
MetaTensor
*
out
);
void
IsfiniteInferMeta
(
const
MetaTensor
&
input
,
MetaTensor
*
out
);
void
TransposeInferMeta
(
const
MetaTensor
&
x
,
const
std
::
vector
<
int
>&
axis
,
MetaTensor
*
out
);
void
EighInferMeta
(
const
MetaTensor
&
x
,
const
std
::
string
&
uplo
,
MetaTensor
*
out_w
,
MetaTensor
*
out_v
);
void
WhereIndexInferMeta
(
const
MetaTensor
&
condition
,
MetaTensor
*
out
);
void
ShardIndexInferMeta
(
const
MetaTensor
&
in
,
int
index_num
,
int
nshards
,
int
shard_id
,
int
ignore_value
,
MetaTensor
*
out
,
MetaConfig
config
=
MetaConfig
());
void
SoftmaxInferMeta
(
const
MetaTensor
&
x
,
int
axis
,
MetaTensor
*
out
);
}
// namespace phi
paddle/phi/kernels/funcs/matrix_inverse.h
浏览文件 @
f7765991
...
...
@@ -39,7 +39,7 @@ void ComputeInverseEigen(const Context& dev_ctx,
int
batch_size
=
rank
>
2
?
a
.
numel
()
/
(
n
*
n
)
:
1
;
const
T
*
a_ptr
=
a
.
data
<
T
>
();
T
*
a_inv_ptr
=
a_inv
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
()
);
T
*
a_inv_ptr
=
dev_ctx
.
template
Alloc
<
T
>(
a_inv
);
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
ConstEigenMatrixMap
mat
(
a_ptr
+
i
*
n
*
n
,
n
,
n
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录