Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
BaiXuePrincess
Paddle
提交
f7386917
P
Paddle
项目概览
BaiXuePrincess
/
Paddle
与 Fork 源项目一致
Fork自
PaddlePaddle / Paddle
通知
1
Star
1
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
0
列表
看板
标记
里程碑
合并请求
0
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
Paddle
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
0
Issue
0
列表
看板
标记
里程碑
合并请求
0
合并请求
0
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f7386917
编写于
4月 20, 2018
作者:
Y
Yu Yang
提交者:
GitHub
4月 20, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #9740 from dzhwinter/memory/activation
"polish activation"
上级
8e005407
ba5ddb7a
变更
7
展开全部
显示空白变更内容
内联
并排
Showing
7 changed file
with
264 addition
and
386 deletion
+264
-386
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+5
-0
paddle/fluid/operators/activation_op.cc
paddle/fluid/operators/activation_op.cc
+199
-361
paddle/fluid/operators/activation_op.cu
paddle/fluid/operators/activation_op.cu
+0
-1
paddle/fluid/operators/activation_op.h
paddle/fluid/operators/activation_op.h
+48
-10
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+4
-0
python/paddle/fluid/layer_helper.py
python/paddle/fluid/layer_helper.py
+5
-1
python/paddle/fluid/tests/unittests/test_activation_op.py
python/paddle/fluid/tests/unittests/test_activation_op.py
+3
-13
未找到文件。
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
f7386917
...
...
@@ -163,8 +163,13 @@ function(op_library TARGET)
# pybind USE_OP
if
(
${
pybind_flag
}
EQUAL 0
)
# NOTE(*): activation use macro to regist the kernels, set use_op manually.
if
(
${
TARGET
}
STREQUAL
"activation"
)
file
(
APPEND
${
pybind_file
}
"USE_OP(relu);
\n
"
)
else
()
file
(
APPEND
${
pybind_file
}
"USE_OP(
${
TARGET
}
);
\n
"
)
endif
()
endif
()
endfunction
()
add_subdirectory
(
math
)
...
...
paddle/fluid/operators/activation_op.cc
浏览文件 @
f7386917
此差异已折叠。
点击以展开。
paddle/fluid/operators/activation_op.cu
浏览文件 @
f7386917
...
...
@@ -9,7 +9,6 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#define EIGEN_USE_GPU
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/platform/float16.h"
...
...
paddle/fluid/operators/activation_op.h
浏览文件 @
f7386917
...
...
@@ -10,6 +10,9 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <glog/logging.h>
#include <string>
#include <unordered_set>
#include <utility>
#include <vector>
...
...
@@ -25,6 +28,16 @@ limitations under the License. */
namespace
paddle
{
namespace
operators
{
/* Use ugly global variable, for the using in python layer side
Please refer to the layer_helper.py and get the details.
*/
static
std
::
unordered_set
<
std
::
string
>
InplaceOpSet
=
{
"sigmoid"
,
"exp"
,
"relu"
,
"tanh"
,
"sqrt"
,
"ceil"
,
"floor"
,
"reciprocal"
,
"relu6"
,
"soft_relu"
,
"hard_sigmoid"
,
};
static
bool
IsInplace
(
std
::
string
op
)
{
return
InplaceOpSet
.
count
(
op
);
}
template
<
typename
DeviceContext
,
typename
Functor
>
class
ActivationKernel
:
public
framework
::
OpKernel
<
typename
Functor
::
ELEMENT_TYPE
>
{
...
...
@@ -60,7 +73,6 @@ class ActivationGradKernel
public:
using
T
=
typename
Functor
::
ELEMENT_TYPE
;
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
Out
=
context
.
Input
<
framework
::
Tensor
>
(
"Out"
);
auto
*
dOut
=
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
...
...
@@ -68,7 +80,6 @@ class ActivationGradKernel
dX
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
dout
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dOut
);
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
auto
out
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
Out
);
auto
dx
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
auto
*
place
=
...
...
@@ -78,7 +89,16 @@ class ActivationGradKernel
for
(
auto
&
attr
:
attrs
)
{
*
attr
.
second
=
context
.
Attr
<
float
>
(
attr
.
first
);
}
bool
inplace
=
functor
.
Inplace
();
if
(
!
inplace
)
{
auto
*
X
=
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
X
);
functor
(
*
place
,
x
,
out
,
dout
,
dx
);
}
else
{
VLOG
(
10
)
<<
" Inplace activation "
;
auto
x
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
dX
);
functor
(
*
place
,
x
,
out
,
dout
,
dx
);
}
}
};
...
...
@@ -89,6 +109,14 @@ struct BaseActivationFunctor {
using
AttrPair
=
std
::
vector
<
std
::
pair
<
const
char
*
,
float
*>>
;
AttrPair
GetAttrs
()
{
return
AttrPair
();
}
/* NOTE(*): Output reuse X memory if X is not dependented by its Gradient.
For example, sigmoid op's gradient didn't involve x, so its output can
reuse
input memory. But abs op's gradient use x, it can not be inplaced.
gradient did use x.
*/
bool
Inplace
()
const
{
return
false
;
}
};
// sigmoid(x) = 1 / (1 + exp(-x))
...
...
@@ -102,6 +130,7 @@ struct SigmoidFunctor : public BaseActivationFunctor<T> {
template
<
typename
T
>
struct
SigmoidGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
bool
Inplace
()
const
{
return
IsInplace
(
"sigmoid"
);
}
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
...
...
@@ -156,6 +185,7 @@ struct ExpFunctor : public BaseActivationFunctor<T> {
template
<
typename
T
>
struct
ExpGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
bool
Inplace
()
const
{
return
IsInplace
(
"exp"
);
}
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
...
...
@@ -174,10 +204,11 @@ struct ReluFunctor : public BaseActivationFunctor<T> {
template
<
typename
T
>
struct
ReluGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
bool
Inplace
()
const
{
return
IsInplace
(
"relu"
);
}
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
(
x
>
static_cast
<
T
>
(
0
)).
template
cast
<
T
>();
dx
.
device
(
d
)
=
dout
*
(
out
>
static_cast
<
T
>
(
0
)).
template
cast
<
T
>();
}
};
...
...
@@ -192,6 +223,7 @@ struct TanhFunctor : public BaseActivationFunctor<T> {
template
<
typename
T
>
struct
TanhGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
bool
Inplace
()
const
{
return
IsInplace
(
"tanh"
);
}
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
...
...
@@ -297,6 +329,7 @@ struct SqrtFunctor : public BaseActivationFunctor<T> {
template
<
typename
T
>
struct
SqrtGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
bool
Inplace
()
const
{
return
IsInplace
(
"sqrt"
);
}
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
...
...
@@ -316,10 +349,11 @@ struct CeilFunctor : public BaseActivationFunctor<T> {
template
<
typename
T
>
struct
ZeroGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
bool
Inplace
()
const
{
return
IsInplace
(
"ceil"
);
}
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
static_cast
<
T
>
(
0
)
/
x
;
dx
.
device
(
d
)
=
static_cast
<
T
>
(
0
)
/
out
;
}
};
...
...
@@ -432,6 +466,7 @@ struct ReciprocalFunctor : public BaseActivationFunctor<T> {
template
<
typename
T
>
struct
ReciprocalGradFunctor
:
public
BaseActivationFunctor
<
T
>
{
bool
Inplace
()
const
{
return
IsInplace
(
"reciprocal"
);
}
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
...
...
@@ -531,11 +566,13 @@ struct Relu6GradFunctor : public BaseActivationFunctor<T> {
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"threshold"
,
&
threshold
}};
}
bool
Inplace
()
const
{
return
IsInplace
(
"relu6"
);
}
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
dx
.
device
(
d
)
=
dout
*
((
x
>
static_cast
<
T
>
(
0
))
*
(
x
<
static_cast
<
T
>
(
threshold
)))
dx
.
device
(
d
)
=
dout
*
((
out
>
static_cast
<
T
>
(
0
))
*
(
out
<
static_cast
<
T
>
(
threshold
)))
.
template
cast
<
T
>();
}
};
...
...
@@ -611,11 +648,12 @@ struct SoftReluGradFunctor : public BaseActivationFunctor<T> {
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"threshold"
,
&
threshold
}};
}
bool
Inplace
()
const
{
return
IsInplace
(
"soft_relu"
);
}
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
auto
tmp
=
static_cast
<
T
>
(
threshold
);
auto
temp
=
((
x
>
-
tmp
)
*
(
x
<
tmp
)).
template
cast
<
T
>().
eval
();
auto
temp
=
((
out
>
-
tmp
)
*
(
out
<
tmp
)).
template
cast
<
T
>().
eval
();
dx
.
device
(
d
)
=
dout
*
(
static_cast
<
T
>
(
1
)
-
(
-
out
).
exp
())
*
temp
;
}
};
...
...
@@ -791,7 +829,7 @@ struct HardSigmoidGradFunctor : public BaseActivationFunctor<T> {
typename
BaseActivationFunctor
<
T
>::
AttrPair
GetAttrs
()
{
return
{{
"slope"
,
&
slope
},
{
"offset"
,
&
offset
}};
}
bool
Inplace
()
{
return
IsInplace
(
"hard_sigmoid"
);
}
template
<
typename
Device
,
typename
X
,
typename
Out
,
typename
dOut
,
typename
dX
>
void
operator
()(
Device
d
,
X
x
,
Out
out
,
dOut
dout
,
dX
dx
)
const
{
...
...
paddle/fluid/pybind/pybind.cc
浏览文件 @
f7386917
...
...
@@ -33,6 +33,7 @@ limitations under the License. */
#include "paddle/fluid/framework/prune.h"
#include "paddle/fluid/framework/reader.h"
#include "paddle/fluid/framework/selected_rows.h"
#include "paddle/fluid/operators/activation_op.h"
#include "paddle/fluid/platform/enforce.h"
#include "paddle/fluid/platform/place.h"
#include "paddle/fluid/platform/profiler.h"
...
...
@@ -461,6 +462,9 @@ All parameter, weight, gradient are variables in Paddle.
self
.
back
().
set_lod
(
t
.
lod
());
});
m
.
def
(
"IsInplace"
,
[](
std
::
string
op
)
->
bool
{
return
operators
::
IsInplace
(
op
);
});
m
.
def
(
"op_support_gpu"
,
OpSupportGPU
);
#ifdef PADDLE_WITH_CUDA
m
.
def
(
"get_cuda_device_count"
,
platform
::
GetCUDADeviceCount
);
...
...
python/paddle/fluid/layer_helper.py
浏览文件 @
f7386917
...
...
@@ -19,6 +19,7 @@ from framework import Variable, Parameter, default_main_program, default_startup
import
unique_name
from
paddle.fluid.initializer
import
Constant
,
Xavier
from
param_attr
import
ParamAttr
,
WeightNormParamAttr
import
core
class
LayerHelper
(
object
):
...
...
@@ -398,13 +399,16 @@ class LayerHelper(object):
return
input_var
if
isinstance
(
act
,
basestring
):
act
=
{
'type'
:
act
}
tmp
=
self
.
create_tmp_variable
(
dtype
=
input_var
.
dtype
)
if
'use_mkldnn'
in
self
.
kwargs
:
act
[
'use_mkldnn'
]
=
self
.
kwargs
.
get
(
'use_mkldnn'
)
act_type
=
act
.
pop
(
'type'
)
if
'use_mkldnn'
in
self
.
kwargs
:
act
[
'use_mkldnn'
]
=
self
.
kwargs
.
get
(
'use_mkldnn'
)
tmp
=
input_var
# NOTE(dzhwinter): some activation support inplace compution.
if
not
core
.
IsInplace
(
act_type
):
tmp
=
self
.
create_tmp_variable
(
dtype
=
input_var
.
dtype
)
self
.
append_op
(
type
=
act_type
,
inputs
=
{
"X"
:
[
input_var
]},
...
...
python/paddle/fluid/tests/unittests/test_activation_op.py
浏览文件 @
f7386917
...
...
@@ -361,10 +361,7 @@ class TestCeil(OpTest):
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.007
)
# The same reason with TestFloor
def
init_dtype
(
self
):
pass
...
...
@@ -396,10 +393,8 @@ class TestFloor(OpTest):
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.007
)
# the gradient on floor, ceil, round is undefined.
# we return zero as gradient, but the numpy return nan
def
init_dtype
(
self
):
pass
...
...
@@ -501,11 +496,6 @@ class TestRound(OpTest):
def
test_check_output
(
self
):
self
.
check_output
()
def
test_check_grad
(
self
):
if
self
.
dtype
==
np
.
float16
:
return
self
.
check_grad
([
'X'
],
'Out'
,
max_relative_error
=
0.007
)
def
init_dtype
(
self
):
pass
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录